Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2split Structured version   Visualization version   GIF version

Theorem itg2split 23561
 Description: The ∫2 integral splits under an almost disjoint union. (The proof avoids the use of itg2add 23571 which requires CC.) (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itg2split.a (𝜑𝐴 ∈ dom vol)
itg2split.b (𝜑𝐵 ∈ dom vol)
itg2split.i (𝜑 → (vol*‘(𝐴𝐵)) = 0)
itg2split.u (𝜑𝑈 = (𝐴𝐵))
itg2split.c ((𝜑𝑥𝑈) → 𝐶 ∈ (0[,]+∞))
itg2split.f 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))
itg2split.g 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0))
itg2split.h 𝐻 = (𝑥 ∈ ℝ ↦ if(𝑥𝑈, 𝐶, 0))
itg2split.sf (𝜑 → (∫2𝐹) ∈ ℝ)
itg2split.sg (𝜑 → (∫2𝐺) ∈ ℝ)
Assertion
Ref Expression
itg2split (𝜑 → (∫2𝐻) = ((∫2𝐹) + (∫2𝐺)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵   𝑥,𝑈
Allowed substitution hints:   𝐶(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem itg2split
Dummy variables 𝑓 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2split.a . . 3 (𝜑𝐴 ∈ dom vol)
2 itg2split.b . . 3 (𝜑𝐵 ∈ dom vol)
3 itg2split.i . . 3 (𝜑 → (vol*‘(𝐴𝐵)) = 0)
4 itg2split.u . . 3 (𝜑𝑈 = (𝐴𝐵))
5 itg2split.c . . 3 ((𝜑𝑥𝑈) → 𝐶 ∈ (0[,]+∞))
6 itg2split.f . . 3 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))
7 itg2split.g . . 3 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0))
8 itg2split.h . . 3 𝐻 = (𝑥 ∈ ℝ ↦ if(𝑥𝑈, 𝐶, 0))
9 itg2split.sf . . 3 (𝜑 → (∫2𝐹) ∈ ℝ)
10 itg2split.sg . . 3 (𝜑 → (∫2𝐺) ∈ ℝ)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10itg2splitlem 23560 . 2 (𝜑 → (∫2𝐻) ≤ ((∫2𝐹) + (∫2𝐺)))
1210adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → (∫2𝐺) ∈ ℝ)
135adantlr 751 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝑈) → 𝐶 ∈ (0[,]+∞))
14 0e0iccpnf 12321 . . . . . . . . . . . 12 0 ∈ (0[,]+∞)
1514a1i 11 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝑈) → 0 ∈ (0[,]+∞))
1613, 15ifclda 4153 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝑈, 𝐶, 0) ∈ (0[,]+∞))
1716, 8fmptd 6425 . . . . . . . . 9 (𝜑𝐻:ℝ⟶(0[,]+∞))
189, 10readdcld 10107 . . . . . . . . 9 (𝜑 → ((∫2𝐹) + (∫2𝐺)) ∈ ℝ)
19 itg2lecl 23550 . . . . . . . . 9 ((𝐻:ℝ⟶(0[,]+∞) ∧ ((∫2𝐹) + (∫2𝐺)) ∈ ℝ ∧ (∫2𝐻) ≤ ((∫2𝐹) + (∫2𝐺))) → (∫2𝐻) ∈ ℝ)
2017, 18, 11, 19syl3anc 1366 . . . . . . . 8 (𝜑 → (∫2𝐻) ∈ ℝ)
2120adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → (∫2𝐻) ∈ ℝ)
22 itg1cl 23497 . . . . . . . 8 (𝑓 ∈ dom ∫1 → (∫1𝑓) ∈ ℝ)
2322ad2antrl 764 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → (∫1𝑓) ∈ ℝ)
24 simprll 819 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝑓 ∈ dom ∫1)
25 simprrl 821 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝑔 ∈ dom ∫1)
2624, 25itg1add 23513 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (∫1‘(𝑓𝑓 + 𝑔)) = ((∫1𝑓) + (∫1𝑔)))
2717adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝐻:ℝ⟶(0[,]+∞))
2824, 25i1fadd 23507 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (𝑓𝑓 + 𝑔) ∈ dom ∫1)
29 inss1 3866 . . . . . . . . . . . . . . . 16 (𝐴𝐵) ⊆ 𝐴
30 mblss 23345 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
311, 30syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐴 ⊆ ℝ)
3229, 31syl5ss 3647 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴𝐵) ⊆ ℝ)
3332adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (𝐴𝐵) ⊆ ℝ)
343adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (vol*‘(𝐴𝐵)) = 0)
35 nfv 1883 . . . . . . . . . . . . . . . . . 18 𝑥𝜑
36 nfv 1883 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑓 ∈ dom ∫1
37 nfcv 2793 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝑓
38 nfcv 2793 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝑟
39 nfmpt1 4780 . . . . . . . . . . . . . . . . . . . . . 22 𝑥(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0))
406, 39nfcxfr 2791 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝐹
4137, 38, 40nfbr 4732 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑓𝑟𝐹
4236, 41nfan 1868 . . . . . . . . . . . . . . . . . . 19 𝑥(𝑓 ∈ dom ∫1𝑓𝑟𝐹)
43 nfv 1883 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑔 ∈ dom ∫1
44 nfcv 2793 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝑔
45 nfmpt1 4780 . . . . . . . . . . . . . . . . . . . . . 22 𝑥(𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0))
467, 45nfcxfr 2791 . . . . . . . . . . . . . . . . . . . . 21 𝑥𝐺
4744, 38, 46nfbr 4732 . . . . . . . . . . . . . . . . . . . 20 𝑥 𝑔𝑟𝐺
4843, 47nfan 1868 . . . . . . . . . . . . . . . . . . 19 𝑥(𝑔 ∈ dom ∫1𝑔𝑟𝐺)
4942, 48nfan 1868 . . . . . . . . . . . . . . . . . 18 𝑥((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))
5035, 49nfan 1868 . . . . . . . . . . . . . . . . 17 𝑥(𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺)))
51 eldifi 3765 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (ℝ ∖ (𝐴𝐵)) → 𝑥 ∈ ℝ)
52 i1ff 23488 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 ∈ dom ∫1𝑓:ℝ⟶ℝ)
5324, 52syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝑓:ℝ⟶ℝ)
54 ffn 6083 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓:ℝ⟶ℝ → 𝑓 Fn ℝ)
5553, 54syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝑓 Fn ℝ)
56 i1ff 23488 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔 ∈ dom ∫1𝑔:ℝ⟶ℝ)
5725, 56syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝑔:ℝ⟶ℝ)
58 ffn 6083 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔:ℝ⟶ℝ → 𝑔 Fn ℝ)
5957, 58syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝑔 Fn ℝ)
60 reex 10065 . . . . . . . . . . . . . . . . . . . . . 22 ℝ ∈ V
6160a1i 11 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → ℝ ∈ V)
62 inidm 3855 . . . . . . . . . . . . . . . . . . . . 21 (ℝ ∩ ℝ) = ℝ
63 eqidd 2652 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) = (𝑓𝑥))
64 eqidd 2652 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ ℝ) → (𝑔𝑥) = (𝑔𝑥))
6555, 59, 61, 61, 62, 63, 64ofval 6948 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ ℝ) → ((𝑓𝑓 + 𝑔)‘𝑥) = ((𝑓𝑥) + (𝑔𝑥)))
6651, 65sylan2 490 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑓 + 𝑔)‘𝑥) = ((𝑓𝑥) + (𝑔𝑥)))
67 ffvelrn 6397 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑓:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) ∈ ℝ)
6853, 51, 67syl2an 493 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑓𝑥) ∈ ℝ)
69 ffvelrn 6397 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑔:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝑔𝑥) ∈ ℝ)
7057, 51, 69syl2an 493 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑔𝑥) ∈ ℝ)
7168, 70readdcld 10107 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑥) + (𝑔𝑥)) ∈ ℝ)
7271rexrd 10127 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑥) + (𝑔𝑥)) ∈ ℝ*)
7372adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ∈ ℝ*)
7468adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ ℝ)
7574rexrd 10127 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ ℝ*)
76 iccssxr 12294 . . . . . . . . . . . . . . . . . . . . . . 23 (0[,]+∞) ⊆ ℝ*
77 ffvelrn 6397 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐻:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝐻𝑥) ∈ (0[,]+∞))
7827, 51, 77syl2an 493 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝐻𝑥) ∈ (0[,]+∞))
7976, 78sseldi 3634 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝐻𝑥) ∈ ℝ*)
8079adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝐻𝑥) ∈ ℝ*)
8170adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ ℝ)
82 0red 10079 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → 0 ∈ ℝ)
83 simprrr 822 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝑔𝑟𝐺)
8460a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑔 Fn ℝ) → ℝ ∈ V)
85 fvexd 6241 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑔 Fn ℝ) ∧ 𝑥 ∈ ℝ) → (𝑔𝑥) ∈ V)
86 ssun2 3810 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝐵 ⊆ (𝐴𝐵)
8786, 4syl5sseqr 3687 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑𝐵𝑈)
8887sselda 3636 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑥𝐵) → 𝑥𝑈)
8988adantlr 751 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐵) → 𝑥𝑈)
9089, 13syldan 486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐵) → 𝐶 ∈ (0[,]+∞))
9114a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐵) → 0 ∈ (0[,]+∞))
9290, 91ifclda 4153 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐵, 𝐶, 0) ∈ (0[,]+∞))
9392adantlr 751 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑔 Fn ℝ) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐵, 𝐶, 0) ∈ (0[,]+∞))
94 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑔 Fn ℝ) → 𝑔 Fn ℝ)
95 dffn5 6280 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑔 Fn ℝ ↔ 𝑔 = (𝑥 ∈ ℝ ↦ (𝑔𝑥)))
9694, 95sylib 208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑔 Fn ℝ) → 𝑔 = (𝑥 ∈ ℝ ↦ (𝑔𝑥)))
977a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑔 Fn ℝ) → 𝐺 = (𝑥 ∈ ℝ ↦ if(𝑥𝐵, 𝐶, 0)))
9884, 85, 93, 96, 97ofrfval2 6957 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑔 Fn ℝ) → (𝑔𝑟𝐺 ↔ ∀𝑥 ∈ ℝ (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0)))
9959, 98syldan 486 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (𝑔𝑟𝐺 ↔ ∀𝑥 ∈ ℝ (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0)))
10083, 99mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → ∀𝑥 ∈ ℝ (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
101100r19.21bi 2961 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ ℝ) → (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
10251, 101sylan2 490 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
103102adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
104 eldifn 3766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ (ℝ ∖ (𝐴𝐵)) → ¬ 𝑥 ∈ (𝐴𝐵))
105104adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ¬ 𝑥 ∈ (𝐴𝐵))
106 elin 3829 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
107105, 106sylnib 317 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ¬ (𝑥𝐴𝑥𝐵))
108 imnan 437 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ ¬ (𝑥𝐴𝑥𝐵))
109107, 108sylibr 224 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑥𝐴 → ¬ 𝑥𝐵))
110109imp 444 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ¬ 𝑥𝐵)
111110iffalsed 4130 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → if(𝑥𝐵, 𝐶, 0) = 0)
112103, 111breqtrd 4711 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑔𝑥) ≤ 0)
11381, 82, 74, 112leadd2dd 10680 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ ((𝑓𝑥) + 0))
11474recnd 10106 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ∈ ℂ)
115114addid1d 10274 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + 0) = (𝑓𝑥))
116113, 115breqtrd 4711 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝑓𝑥))
117 simprlr 820 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → 𝑓𝑟𝐹)
11860a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑓 Fn ℝ) → ℝ ∈ V)
119 fvexd 6241 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑓 Fn ℝ) ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) ∈ V)
120 ssun1 3809 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝐴 ⊆ (𝐴𝐵)
121120, 4syl5sseqr 3687 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑𝐴𝑈)
122121sselda 3636 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑥𝐴) → 𝑥𝑈)
123122adantlr 751 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → 𝑥𝑈)
124123, 13syldan 486 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑥 ∈ ℝ) ∧ 𝑥𝐴) → 𝐶 ∈ (0[,]+∞))
12514a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑥 ∈ ℝ) ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,]+∞))
126124, 125ifclda 4153 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐶, 0) ∈ (0[,]+∞))
127126adantlr 751 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑓 Fn ℝ) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐶, 0) ∈ (0[,]+∞))
128 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑓 Fn ℝ) → 𝑓 Fn ℝ)
129 dffn5 6280 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓 Fn ℝ ↔ 𝑓 = (𝑥 ∈ ℝ ↦ (𝑓𝑥)))
130128, 129sylib 208 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑓 Fn ℝ) → 𝑓 = (𝑥 ∈ ℝ ↦ (𝑓𝑥)))
1316a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑓 Fn ℝ) → 𝐹 = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐶, 0)))
132118, 119, 127, 130, 131ofrfval2 6957 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑓 Fn ℝ) → (𝑓𝑟𝐹 ↔ ∀𝑥 ∈ ℝ (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0)))
13355, 132syldan 486 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (𝑓𝑟𝐹 ↔ ∀𝑥 ∈ ℝ (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0)))
134117, 133mpbid 222 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → ∀𝑥 ∈ ℝ (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
135134r19.21bi 2961 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ ℝ) → (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
13651, 135sylan2 490 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
137136adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
138121ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → 𝐴𝑈)
139138sselda 3636 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → 𝑥𝑈)
140139iftrued 4127 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → if(𝑥𝑈, 𝐶, 0) = 𝐶)
141 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
14216adantlr 751 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ ℝ) → if(𝑥𝑈, 𝐶, 0) ∈ (0[,]+∞))
1438fvmpt2 6330 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑥 ∈ ℝ ∧ if(𝑥𝑈, 𝐶, 0) ∈ (0[,]+∞)) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
144141, 142, 143syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ ℝ) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
14551, 144sylan2 490 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
146145adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
147 iftrue 4125 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 𝐶)
148147adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → if(𝑥𝐴, 𝐶, 0) = 𝐶)
149140, 146, 1483eqtr4d 2695 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝐻𝑥) = if(𝑥𝐴, 𝐶, 0))
150137, 149breqtrrd 4713 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → (𝑓𝑥) ≤ (𝐻𝑥))
15173, 75, 80, 116, 150xrletrd 12031 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝐻𝑥))
15272adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ∈ ℝ*)
15370adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ∈ ℝ)
154153rexrd 10127 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ∈ ℝ*)
15579adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝐻𝑥) ∈ ℝ*)
15668adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑓𝑥) ∈ ℝ)
157 0red 10079 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → 0 ∈ ℝ)
158136adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑓𝑥) ≤ if(𝑥𝐴, 𝐶, 0))
159 iffalse 4128 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑥𝐴 → if(𝑥𝐴, 𝐶, 0) = 0)
160159adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → if(𝑥𝐴, 𝐶, 0) = 0)
161158, 160breqtrd 4711 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑓𝑥) ≤ 0)
162156, 157, 153, 161leadd1dd 10679 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (0 + (𝑔𝑥)))
163153recnd 10106 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ∈ ℂ)
164163addid2d 10275 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (0 + (𝑔𝑥)) = (𝑔𝑥))
165162, 164breqtrd 4711 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝑔𝑥))
166102adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ≤ if(𝑥𝐵, 𝐶, 0))
167145adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝐻𝑥) = if(𝑥𝑈, 𝐶, 0))
1684ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → 𝑈 = (𝐴𝐵))
169168eleq2d 2716 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑥𝑈𝑥 ∈ (𝐴𝐵)))
170 biorf 419 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 𝑥𝐴 → (𝑥𝐵 ↔ (𝑥𝐴𝑥𝐵)))
171 elun 3786 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
172170, 171syl6rbbr 279 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑥𝐴 → (𝑥 ∈ (𝐴𝐵) ↔ 𝑥𝐵))
173172adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑥 ∈ (𝐴𝐵) ↔ 𝑥𝐵))
174169, 173bitrd 268 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑥𝑈𝑥𝐵))
175174ifbid 4141 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → if(𝑥𝑈, 𝐶, 0) = if(𝑥𝐵, 𝐶, 0))
176167, 175eqtrd 2685 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝐻𝑥) = if(𝑥𝐵, 𝐶, 0))
177166, 176breqtrrd 4713 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → (𝑔𝑥) ≤ (𝐻𝑥))
178152, 154, 155, 165, 177xrletrd 12031 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) ∧ ¬ 𝑥𝐴) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝐻𝑥))
179151, 178pm2.61dan 849 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑥) + (𝑔𝑥)) ≤ (𝐻𝑥))
18066, 179eqbrtrd 4707 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑥 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑓 + 𝑔)‘𝑥) ≤ (𝐻𝑥))
181180ex 449 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (𝑥 ∈ (ℝ ∖ (𝐴𝐵)) → ((𝑓𝑓 + 𝑔)‘𝑥) ≤ (𝐻𝑥)))
18250, 181ralrimi 2986 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → ∀𝑥 ∈ (ℝ ∖ (𝐴𝐵))((𝑓𝑓 + 𝑔)‘𝑥) ≤ (𝐻𝑥))
183 nfv 1883 . . . . . . . . . . . . . . . . 17 𝑦((𝑓𝑓 + 𝑔)‘𝑥) ≤ (𝐻𝑥)
184 nfcv 2793 . . . . . . . . . . . . . . . . . 18 𝑥((𝑓𝑓 + 𝑔)‘𝑦)
185 nfcv 2793 . . . . . . . . . . . . . . . . . 18 𝑥
186 nfmpt1 4780 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝑥 ∈ ℝ ↦ if(𝑥𝑈, 𝐶, 0))
1878, 186nfcxfr 2791 . . . . . . . . . . . . . . . . . . 19 𝑥𝐻
188 nfcv 2793 . . . . . . . . . . . . . . . . . . 19 𝑥𝑦
189187, 188nffv 6236 . . . . . . . . . . . . . . . . . 18 𝑥(𝐻𝑦)
190184, 185, 189nfbr 4732 . . . . . . . . . . . . . . . . 17 𝑥((𝑓𝑓 + 𝑔)‘𝑦) ≤ (𝐻𝑦)
191 fveq2 6229 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → ((𝑓𝑓 + 𝑔)‘𝑥) = ((𝑓𝑓 + 𝑔)‘𝑦))
192 fveq2 6229 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝐻𝑥) = (𝐻𝑦))
193191, 192breq12d 4698 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (((𝑓𝑓 + 𝑔)‘𝑥) ≤ (𝐻𝑥) ↔ ((𝑓𝑓 + 𝑔)‘𝑦) ≤ (𝐻𝑦)))
194183, 190, 193cbvral 3197 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ (ℝ ∖ (𝐴𝐵))((𝑓𝑓 + 𝑔)‘𝑥) ≤ (𝐻𝑥) ↔ ∀𝑦 ∈ (ℝ ∖ (𝐴𝐵))((𝑓𝑓 + 𝑔)‘𝑦) ≤ (𝐻𝑦))
195182, 194sylib 208 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → ∀𝑦 ∈ (ℝ ∖ (𝐴𝐵))((𝑓𝑓 + 𝑔)‘𝑦) ≤ (𝐻𝑦))
196195r19.21bi 2961 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) ∧ 𝑦 ∈ (ℝ ∖ (𝐴𝐵))) → ((𝑓𝑓 + 𝑔)‘𝑦) ≤ (𝐻𝑦))
19727, 28, 33, 34, 196itg2uba 23555 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (∫1‘(𝑓𝑓 + 𝑔)) ≤ (∫2𝐻))
19826, 197eqbrtrrd 4709 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → ((∫1𝑓) + (∫1𝑔)) ≤ (∫2𝐻))
19923adantrr 753 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (∫1𝑓) ∈ ℝ)
200 itg1cl 23497 . . . . . . . . . . . . . 14 (𝑔 ∈ dom ∫1 → (∫1𝑔) ∈ ℝ)
20125, 200syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (∫1𝑔) ∈ ℝ)
20220adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (∫2𝐻) ∈ ℝ)
203199, 201, 202leaddsub2d 10667 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (((∫1𝑓) + (∫1𝑔)) ≤ (∫2𝐻) ↔ (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓))))
204198, 203mpbid 222 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑓 ∈ dom ∫1𝑓𝑟𝐹) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺))) → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓)))
205204anassrs 681 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) ∧ (𝑔 ∈ dom ∫1𝑔𝑟𝐺)) → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓)))
206205expr 642 . . . . . . . . 9 (((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) ∧ 𝑔 ∈ dom ∫1) → (𝑔𝑟𝐺 → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓))))
207206ralrimiva 2995 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → ∀𝑔 ∈ dom ∫1(𝑔𝑟𝐺 → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓))))
20892, 7fmptd 6425 . . . . . . . . . 10 (𝜑𝐺:ℝ⟶(0[,]+∞))
209208adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → 𝐺:ℝ⟶(0[,]+∞))
21021, 23resubcld 10496 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → ((∫2𝐻) − (∫1𝑓)) ∈ ℝ)
211210rexrd 10127 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → ((∫2𝐻) − (∫1𝑓)) ∈ ℝ*)
212 itg2leub 23546 . . . . . . . . 9 ((𝐺:ℝ⟶(0[,]+∞) ∧ ((∫2𝐻) − (∫1𝑓)) ∈ ℝ*) → ((∫2𝐺) ≤ ((∫2𝐻) − (∫1𝑓)) ↔ ∀𝑔 ∈ dom ∫1(𝑔𝑟𝐺 → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓)))))
213209, 211, 212syl2anc 694 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → ((∫2𝐺) ≤ ((∫2𝐻) − (∫1𝑓)) ↔ ∀𝑔 ∈ dom ∫1(𝑔𝑟𝐺 → (∫1𝑔) ≤ ((∫2𝐻) − (∫1𝑓)))))
214207, 213mpbird 247 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → (∫2𝐺) ≤ ((∫2𝐻) − (∫1𝑓)))
21512, 21, 23, 214lesubd 10669 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ dom ∫1𝑓𝑟𝐹)) → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺)))
216215expr 642 . . . . 5 ((𝜑𝑓 ∈ dom ∫1) → (𝑓𝑟𝐹 → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺))))
217216ralrimiva 2995 . . . 4 (𝜑 → ∀𝑓 ∈ dom ∫1(𝑓𝑟𝐹 → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺))))
218126, 6fmptd 6425 . . . . 5 (𝜑𝐹:ℝ⟶(0[,]+∞))
21920, 10resubcld 10496 . . . . . 6 (𝜑 → ((∫2𝐻) − (∫2𝐺)) ∈ ℝ)
220219rexrd 10127 . . . . 5 (𝜑 → ((∫2𝐻) − (∫2𝐺)) ∈ ℝ*)
221 itg2leub 23546 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ ((∫2𝐻) − (∫2𝐺)) ∈ ℝ*) → ((∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺)) ↔ ∀𝑓 ∈ dom ∫1(𝑓𝑟𝐹 → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺)))))
222218, 220, 221syl2anc 694 . . . 4 (𝜑 → ((∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺)) ↔ ∀𝑓 ∈ dom ∫1(𝑓𝑟𝐹 → (∫1𝑓) ≤ ((∫2𝐻) − (∫2𝐺)))))
223217, 222mpbird 247 . . 3 (𝜑 → (∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺)))
224 leaddsub 10542 . . . 4 (((∫2𝐹) ∈ ℝ ∧ (∫2𝐺) ∈ ℝ ∧ (∫2𝐻) ∈ ℝ) → (((∫2𝐹) + (∫2𝐺)) ≤ (∫2𝐻) ↔ (∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺))))
2259, 10, 20, 224syl3anc 1366 . . 3 (𝜑 → (((∫2𝐹) + (∫2𝐺)) ≤ (∫2𝐻) ↔ (∫2𝐹) ≤ ((∫2𝐻) − (∫2𝐺))))
226223, 225mpbird 247 . 2 (𝜑 → ((∫2𝐹) + (∫2𝐺)) ≤ (∫2𝐻))
227 itg2cl 23544 . . . 4 (𝐻:ℝ⟶(0[,]+∞) → (∫2𝐻) ∈ ℝ*)
22817, 227syl 17 . . 3 (𝜑 → (∫2𝐻) ∈ ℝ*)
22918rexrd 10127 . . 3 (𝜑 → ((∫2𝐹) + (∫2𝐺)) ∈ ℝ*)
230 xrletri3 12023 . . 3 (((∫2𝐻) ∈ ℝ* ∧ ((∫2𝐹) + (∫2𝐺)) ∈ ℝ*) → ((∫2𝐻) = ((∫2𝐹) + (∫2𝐺)) ↔ ((∫2𝐻) ≤ ((∫2𝐹) + (∫2𝐺)) ∧ ((∫2𝐹) + (∫2𝐺)) ≤ (∫2𝐻))))
231228, 229, 230syl2anc 694 . 2 (𝜑 → ((∫2𝐻) = ((∫2𝐹) + (∫2𝐺)) ↔ ((∫2𝐻) ≤ ((∫2𝐹) + (∫2𝐺)) ∧ ((∫2𝐹) + (∫2𝐺)) ≤ (∫2𝐻))))
23211, 226, 231mpbir2and 977 1 (𝜑 → (∫2𝐻) = ((∫2𝐹) + (∫2𝐺)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ∀wral 2941  Vcvv 3231   ∖ cdif 3604   ∪ cun 3605   ∩ cin 3606   ⊆ wss 3607  ifcif 4119   class class class wbr 4685   ↦ cmpt 4762  dom cdm 5143   Fn wfn 5921  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690   ∘𝑓 cof 6937   ∘𝑟 cofr 6938  ℝcr 9973  0cc0 9974   + caddc 9977  +∞cpnf 10109  ℝ*cxr 10111   ≤ cle 10113   − cmin 10304  [,]cicc 12216  vol*covol 23277  volcvol 23278  ∫1citg1 23429  ∫2citg2 23430 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-ofr 6940  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-rest 16130  df-topgen 16151  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-top 20747  df-topon 20764  df-bases 20798  df-cmp 21238  df-ovol 23279  df-vol 23280  df-mbf 23433  df-itg1 23434  df-itg2 23435 This theorem is referenced by:  itg2cnlem2  23574  itgsplit  23647  iblsplit  40500
 Copyright terms: Public domain W3C validator