Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2seq Structured version   Visualization version   GIF version

Theorem itg2seq 23728
 Description: Definitional property of the ∫2 integral: for any function 𝐹 there is a countable sequence 𝑔 of simple functions less than 𝐹 whose integrals converge to the integral of 𝐹. (This theorem is for the most part unnecessary in lieu of itg2i1fseq 23741, but unlike that theorem this one doesn't require 𝐹 to be measurable.) (Contributed by Mario Carneiro, 14-Aug-2014.)
Assertion
Ref Expression
itg2seq (𝐹:ℝ⟶(0[,]+∞) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∘𝑟𝐹 ∧ (∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < )))
Distinct variable group:   𝑔,𝑛,𝐹

Proof of Theorem itg2seq
Dummy variables 𝑓 𝑚 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnre 11228 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
21ad2antlr 698 . . . . . . . . . . 11 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ (∫2𝐹) = +∞) → 𝑛 ∈ ℝ)
3 ltpnf 12158 . . . . . . . . . . 11 (𝑛 ∈ ℝ → 𝑛 < +∞)
42, 3syl 17 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ (∫2𝐹) = +∞) → 𝑛 < +∞)
5 iftrue 4229 . . . . . . . . . . 11 ((∫2𝐹) = +∞ → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) = 𝑛)
65adantl 467 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ (∫2𝐹) = +∞) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) = 𝑛)
7 simpr 471 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ (∫2𝐹) = +∞) → (∫2𝐹) = +∞)
84, 6, 73brtr4d 4816 . . . . . . . . 9 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ (∫2𝐹) = +∞) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫2𝐹))
9 iffalse 4232 . . . . . . . . . . 11 (¬ (∫2𝐹) = +∞ → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) = ((∫2𝐹) − (1 / 𝑛)))
109adantl 467 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) = ((∫2𝐹) − (1 / 𝑛)))
11 itg2cl 23718 . . . . . . . . . . . . . . 15 (𝐹:ℝ⟶(0[,]+∞) → (∫2𝐹) ∈ ℝ*)
12 xrrebnd 12203 . . . . . . . . . . . . . . 15 ((∫2𝐹) ∈ ℝ* → ((∫2𝐹) ∈ ℝ ↔ (-∞ < (∫2𝐹) ∧ (∫2𝐹) < +∞)))
1311, 12syl 17 . . . . . . . . . . . . . 14 (𝐹:ℝ⟶(0[,]+∞) → ((∫2𝐹) ∈ ℝ ↔ (-∞ < (∫2𝐹) ∧ (∫2𝐹) < +∞)))
14 itg2ge0 23721 . . . . . . . . . . . . . . . 16 (𝐹:ℝ⟶(0[,]+∞) → 0 ≤ (∫2𝐹))
15 mnflt0 12163 . . . . . . . . . . . . . . . . 17 -∞ < 0
16 mnfxr 10297 . . . . . . . . . . . . . . . . . . 19 -∞ ∈ ℝ*
17 0xr 10287 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ*
18 xrltletr 12192 . . . . . . . . . . . . . . . . . . 19 ((-∞ ∈ ℝ* ∧ 0 ∈ ℝ* ∧ (∫2𝐹) ∈ ℝ*) → ((-∞ < 0 ∧ 0 ≤ (∫2𝐹)) → -∞ < (∫2𝐹)))
1916, 17, 18mp3an12 1561 . . . . . . . . . . . . . . . . . 18 ((∫2𝐹) ∈ ℝ* → ((-∞ < 0 ∧ 0 ≤ (∫2𝐹)) → -∞ < (∫2𝐹)))
2011, 19syl 17 . . . . . . . . . . . . . . . . 17 (𝐹:ℝ⟶(0[,]+∞) → ((-∞ < 0 ∧ 0 ≤ (∫2𝐹)) → -∞ < (∫2𝐹)))
2115, 20mpani 668 . . . . . . . . . . . . . . . 16 (𝐹:ℝ⟶(0[,]+∞) → (0 ≤ (∫2𝐹) → -∞ < (∫2𝐹)))
2214, 21mpd 15 . . . . . . . . . . . . . . 15 (𝐹:ℝ⟶(0[,]+∞) → -∞ < (∫2𝐹))
2322biantrurd 516 . . . . . . . . . . . . . 14 (𝐹:ℝ⟶(0[,]+∞) → ((∫2𝐹) < +∞ ↔ (-∞ < (∫2𝐹) ∧ (∫2𝐹) < +∞)))
24 nltpnft 12199 . . . . . . . . . . . . . . . 16 ((∫2𝐹) ∈ ℝ* → ((∫2𝐹) = +∞ ↔ ¬ (∫2𝐹) < +∞))
2511, 24syl 17 . . . . . . . . . . . . . . 15 (𝐹:ℝ⟶(0[,]+∞) → ((∫2𝐹) = +∞ ↔ ¬ (∫2𝐹) < +∞))
2625con2bid 343 . . . . . . . . . . . . . 14 (𝐹:ℝ⟶(0[,]+∞) → ((∫2𝐹) < +∞ ↔ ¬ (∫2𝐹) = +∞))
2713, 23, 263bitr2rd 297 . . . . . . . . . . . . 13 (𝐹:ℝ⟶(0[,]+∞) → (¬ (∫2𝐹) = +∞ ↔ (∫2𝐹) ∈ ℝ))
2827biimpa 462 . . . . . . . . . . . 12 ((𝐹:ℝ⟶(0[,]+∞) ∧ ¬ (∫2𝐹) = +∞) → (∫2𝐹) ∈ ℝ)
2928adantlr 686 . . . . . . . . . . 11 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → (∫2𝐹) ∈ ℝ)
30 nnrp 12044 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
3130rpreccld 12084 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ+)
3231ad2antlr 698 . . . . . . . . . . 11 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → (1 / 𝑛) ∈ ℝ+)
3329, 32ltsubrpd 12106 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → ((∫2𝐹) − (1 / 𝑛)) < (∫2𝐹))
3410, 33eqbrtrd 4806 . . . . . . . . 9 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫2𝐹))
358, 34pm2.61dan 796 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫2𝐹))
36 nnrecre 11258 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
3736ad2antlr 698 . . . . . . . . . . . 12 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → (1 / 𝑛) ∈ ℝ)
3829, 37resubcld 10659 . . . . . . . . . . 11 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ ¬ (∫2𝐹) = +∞) → ((∫2𝐹) − (1 / 𝑛)) ∈ ℝ)
392, 38ifclda 4257 . . . . . . . . . 10 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ)
4039rexrd 10290 . . . . . . . . 9 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*)
4111adantr 466 . . . . . . . . 9 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (∫2𝐹) ∈ ℝ*)
42 xrltnle 10306 . . . . . . . . 9 ((if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ* ∧ (∫2𝐹) ∈ ℝ*) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫2𝐹) ↔ ¬ (∫2𝐹) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
4340, 41, 42syl2anc 565 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫2𝐹) ↔ ¬ (∫2𝐹) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
4435, 43mpbid 222 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → ¬ (∫2𝐹) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))
45 itg2leub 23720 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*) → ((∫2𝐹) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ∀𝑓 ∈ dom ∫1(𝑓𝑟𝐹 → (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))))
4640, 45syldan 571 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → ((∫2𝐹) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ∀𝑓 ∈ dom ∫1(𝑓𝑟𝐹 → (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))))
4744, 46mtbid 313 . . . . . 6 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → ¬ ∀𝑓 ∈ dom ∫1(𝑓𝑟𝐹 → (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
48 rexanali 3145 . . . . . 6 (∃𝑓 ∈ dom ∫1(𝑓𝑟𝐹 ∧ ¬ (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))) ↔ ¬ ∀𝑓 ∈ dom ∫1(𝑓𝑟𝐹 → (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
4947, 48sylibr 224 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → ∃𝑓 ∈ dom ∫1(𝑓𝑟𝐹 ∧ ¬ (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
50 itg1cl 23671 . . . . . . . 8 (𝑓 ∈ dom ∫1 → (∫1𝑓) ∈ ℝ)
51 ltnle 10318 . . . . . . . 8 ((if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ ∧ (∫1𝑓) ∈ ℝ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓) ↔ ¬ (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
5239, 50, 51syl2an 575 . . . . . . 7 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ dom ∫1) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓) ↔ ¬ (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
5352anbi2d 606 . . . . . 6 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) ∧ 𝑓 ∈ dom ∫1) → ((𝑓𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓)) ↔ (𝑓𝑟𝐹 ∧ ¬ (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))))
5453rexbidva 3196 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → (∃𝑓 ∈ dom ∫1(𝑓𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓)) ↔ ∃𝑓 ∈ dom ∫1(𝑓𝑟𝐹 ∧ ¬ (∫1𝑓) ≤ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))))
5549, 54mpbird 247 . . . 4 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑛 ∈ ℕ) → ∃𝑓 ∈ dom ∫1(𝑓𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓)))
5655ralrimiva 3114 . . 3 (𝐹:ℝ⟶(0[,]+∞) → ∀𝑛 ∈ ℕ ∃𝑓 ∈ dom ∫1(𝑓𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓)))
57 ovex 6822 . . . . 5 (ℝ ↑𝑚 ℝ) ∈ V
58 i1ff 23662 . . . . . . 7 (𝑥 ∈ dom ∫1𝑥:ℝ⟶ℝ)
59 reex 10228 . . . . . . . 8 ℝ ∈ V
6059, 59elmap 8037 . . . . . . 7 (𝑥 ∈ (ℝ ↑𝑚 ℝ) ↔ 𝑥:ℝ⟶ℝ)
6158, 60sylibr 224 . . . . . 6 (𝑥 ∈ dom ∫1𝑥 ∈ (ℝ ↑𝑚 ℝ))
6261ssriv 3754 . . . . 5 dom ∫1 ⊆ (ℝ ↑𝑚 ℝ)
6357, 62ssexi 4934 . . . 4 dom ∫1 ∈ V
64 nnenom 12986 . . . 4 ℕ ≈ ω
65 breq1 4787 . . . . 5 (𝑓 = (𝑔𝑛) → (𝑓𝑟𝐹 ↔ (𝑔𝑛) ∘𝑟𝐹))
66 fveq2 6332 . . . . . 6 (𝑓 = (𝑔𝑛) → (∫1𝑓) = (∫1‘(𝑔𝑛)))
6766breq2d 4796 . . . . 5 (𝑓 = (𝑔𝑛) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓) ↔ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))
6865, 67anbi12d 608 . . . 4 (𝑓 = (𝑔𝑛) → ((𝑓𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓)) ↔ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)))))
6963, 64, 68axcc4 9462 . . 3 (∀𝑛 ∈ ℕ ∃𝑓 ∈ dom ∫1(𝑓𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1𝑓)) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)))))
7056, 69syl 17 . 2 (𝐹:ℝ⟶(0[,]+∞) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)))))
71 simprl 746 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → 𝑔:ℕ⟶dom ∫1)
72 simpl 468 . . . . . . 7 (((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))) → (𝑔𝑛) ∘𝑟𝐹)
7372ralimi 3100 . . . . . 6 (∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∘𝑟𝐹)
7473ad2antll 700 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ∀𝑛 ∈ ℕ (𝑔𝑛) ∘𝑟𝐹)
7540adantlr 686 . . . . . . . . . . . . 13 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*)
76 ffvelrn 6500 . . . . . . . . . . . . . . . 16 ((𝑔:ℕ⟶dom ∫1𝑛 ∈ ℕ) → (𝑔𝑛) ∈ dom ∫1)
77 itg1cl 23671 . . . . . . . . . . . . . . . 16 ((𝑔𝑛) ∈ dom ∫1 → (∫1‘(𝑔𝑛)) ∈ ℝ)
7876, 77syl 17 . . . . . . . . . . . . . . 15 ((𝑔:ℕ⟶dom ∫1𝑛 ∈ ℕ) → (∫1‘(𝑔𝑛)) ∈ ℝ)
7978adantll 685 . . . . . . . . . . . . . 14 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (∫1‘(𝑔𝑛)) ∈ ℝ)
8079rexrd 10290 . . . . . . . . . . . . 13 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (∫1‘(𝑔𝑛)) ∈ ℝ*)
81 xrltle 12186 . . . . . . . . . . . . 13 ((if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ* ∧ (∫1‘(𝑔𝑛)) ∈ ℝ*) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ (∫1‘(𝑔𝑛))))
8275, 80, 81syl2anc 565 . . . . . . . . . . . 12 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ (∫1‘(𝑔𝑛))))
83 fveq2 6332 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → (𝑔𝑛) = (𝑔𝑚))
8483fveq2d 6336 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (∫1‘(𝑔𝑛)) = (∫1‘(𝑔𝑚)))
8584cbvmptv 4882 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) = (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))
8685rneqi 5490 . . . . . . . . . . . . . . 15 ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) = ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))
87 eqid 2770 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) = (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))
8878, 87fmptd 6527 . . . . . . . . . . . . . . . . . . 19 (𝑔:ℕ⟶dom ∫1 → (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))):ℕ⟶ℝ)
8988adantl 467 . . . . . . . . . . . . . . . . . 18 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) → (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))):ℕ⟶ℝ)
90 frn 6193 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))):ℕ⟶ℝ → ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ)
9189, 90syl 17 . . . . . . . . . . . . . . . . 17 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) → ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ)
92 ressxr 10284 . . . . . . . . . . . . . . . . 17 ℝ ⊆ ℝ*
9391, 92syl6ss 3762 . . . . . . . . . . . . . . . 16 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) → ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ*)
9493adantr 466 . . . . . . . . . . . . . . 15 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ*)
9586, 94syl5eqssr 3797 . . . . . . . . . . . . . 14 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))) ⊆ ℝ*)
96 fveq2 6332 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑛 → (𝑔𝑚) = (𝑔𝑛))
9796fveq2d 6336 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → (∫1‘(𝑔𝑚)) = (∫1‘(𝑔𝑛)))
98 eqid 2770 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))) = (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))
99 fvex 6342 . . . . . . . . . . . . . . . . 17 (∫1‘(𝑔𝑛)) ∈ V
10097, 98, 99fvmpt 6424 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))‘𝑛) = (∫1‘(𝑔𝑛)))
101 fvex 6342 . . . . . . . . . . . . . . . . . 18 (∫1‘(𝑔𝑚)) ∈ V
102101, 98fnmpti 6162 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))) Fn ℕ
103 fnfvelrn 6499 . . . . . . . . . . . . . . . . 17 (((𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))) Fn ℕ ∧ 𝑛 ∈ ℕ) → ((𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))‘𝑛) ∈ ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))))
104102, 103mpan 662 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))‘𝑛) ∈ ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))))
105100, 104eqeltrrd 2850 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (∫1‘(𝑔𝑛)) ∈ ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))))
106105adantl 467 . . . . . . . . . . . . . 14 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (∫1‘(𝑔𝑛)) ∈ ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))))
107 supxrub 12358 . . . . . . . . . . . . . 14 ((ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))) ⊆ ℝ* ∧ (∫1‘(𝑔𝑛)) ∈ ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚)))) → (∫1‘(𝑔𝑛)) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ))
10895, 106, 107syl2anc 565 . . . . . . . . . . . . 13 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (∫1‘(𝑔𝑛)) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ))
10986supeq1i 8508 . . . . . . . . . . . . . . 15 sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) = sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )
110 supxrcl 12349 . . . . . . . . . . . . . . . 16 (ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ* → sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ∈ ℝ*)
11194, 110syl 17 . . . . . . . . . . . . . . 15 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ∈ ℝ*)
112109, 111syl5eqelr 2854 . . . . . . . . . . . . . 14 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) ∈ ℝ*)
113 xrletr 12193 . . . . . . . . . . . . . 14 ((if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ* ∧ (∫1‘(𝑔𝑛)) ∈ ℝ* ∧ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) ∈ ℝ*) → ((if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ (∫1‘(𝑔𝑛)) ∧ (∫1‘(𝑔𝑛)) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
11475, 80, 112, 113syl3anc 1475 . . . . . . . . . . . . 13 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → ((if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ (∫1‘(𝑔𝑛)) ∧ (∫1‘(𝑔𝑛)) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
115108, 114mpan2d 666 . . . . . . . . . . . 12 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ (∫1‘(𝑔𝑛)) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
11682, 115syld 47 . . . . . . . . . . 11 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
117116adantld 474 . . . . . . . . . 10 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
118117ralimdva 3110 . . . . . . . . 9 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) → (∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))) → ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
119118impr 442 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ))
120 breq2 4788 . . . . . . . . . . 11 (𝑥 = sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 ↔ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
121120ralbidv 3134 . . . . . . . . . 10 (𝑥 = sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 ↔ ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
122 breq2 4788 . . . . . . . . . 10 (𝑥 = sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) → ((∫2𝐹) ≤ 𝑥 ↔ (∫2𝐹) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
123121, 122imbi12d 333 . . . . . . . . 9 (𝑥 = sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) → ((∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥) ↔ (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) → (∫2𝐹) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ))))
124 elxr 12154 . . . . . . . . . . . 12 (𝑥 ∈ ℝ* ↔ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞))
125 simplrl 754 . . . . . . . . . . . . . . . . . . 19 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ (∫2𝐹) = +∞) → 𝑥 ∈ ℝ)
126 arch 11490 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ → ∃𝑛 ∈ ℕ 𝑥 < 𝑛)
127125, 126syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ (∫2𝐹) = +∞) → ∃𝑛 ∈ ℕ 𝑥 < 𝑛)
1285adantl 467 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ (∫2𝐹) = +∞) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) = 𝑛)
129128breq2d 4796 . . . . . . . . . . . . . . . . . . 19 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ (∫2𝐹) = +∞) → (𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ 𝑥 < 𝑛))
130129rexbidv 3199 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ (∫2𝐹) = +∞) → (∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ∃𝑛 ∈ ℕ 𝑥 < 𝑛))
131127, 130mpbird 247 . . . . . . . . . . . . . . . . 17 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ (∫2𝐹) = +∞) → ∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))
13228adantlr 686 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → (∫2𝐹) ∈ ℝ)
133 simplrl 754 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → 𝑥 ∈ ℝ)
134132, 133resubcld 10659 . . . . . . . . . . . . . . . . . . 19 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → ((∫2𝐹) − 𝑥) ∈ ℝ)
135 simplrr 755 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → 𝑥 < (∫2𝐹))
136133, 132posdifd 10815 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → (𝑥 < (∫2𝐹) ↔ 0 < ((∫2𝐹) − 𝑥)))
137135, 136mpbid 222 . . . . . . . . . . . . . . . . . . 19 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → 0 < ((∫2𝐹) − 𝑥))
138 nnrecl 11491 . . . . . . . . . . . . . . . . . . 19 ((((∫2𝐹) − 𝑥) ∈ ℝ ∧ 0 < ((∫2𝐹) − 𝑥)) → ∃𝑛 ∈ ℕ (1 / 𝑛) < ((∫2𝐹) − 𝑥))
139134, 137, 138syl2anc 565 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → ∃𝑛 ∈ ℕ (1 / 𝑛) < ((∫2𝐹) − 𝑥))
14036adantl 467 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → (1 / 𝑛) ∈ ℝ)
141132adantr 466 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → (∫2𝐹) ∈ ℝ)
142133adantr 466 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ)
143 ltsub13 10710 . . . . . . . . . . . . . . . . . . . . 21 (((1 / 𝑛) ∈ ℝ ∧ (∫2𝐹) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((1 / 𝑛) < ((∫2𝐹) − 𝑥) ↔ 𝑥 < ((∫2𝐹) − (1 / 𝑛))))
144140, 141, 142, 143syl3anc 1475 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → ((1 / 𝑛) < ((∫2𝐹) − 𝑥) ↔ 𝑥 < ((∫2𝐹) − (1 / 𝑛))))
1459ad2antlr 698 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) = ((∫2𝐹) − (1 / 𝑛)))
146145breq2d 4796 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → (𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ 𝑥 < ((∫2𝐹) − (1 / 𝑛))))
147144, 146bitr4d 271 . . . . . . . . . . . . . . . . . . 19 ((((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) ∧ 𝑛 ∈ ℕ) → ((1 / 𝑛) < ((∫2𝐹) − 𝑥) ↔ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
148147rexbidva 3196 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → (∃𝑛 ∈ ℕ (1 / 𝑛) < ((∫2𝐹) − 𝑥) ↔ ∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
149139, 148mpbid 222 . . . . . . . . . . . . . . . . 17 (((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) ∧ ¬ (∫2𝐹) = +∞) → ∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))
150131, 149pm2.61dan 796 . . . . . . . . . . . . . . . 16 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∧ 𝑥 < (∫2𝐹))) → ∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))
151150expr 444 . . . . . . . . . . . . . . 15 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝑥 < (∫2𝐹) → ∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛)))))
152 rexr 10286 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
153 xrltnle 10306 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ* ∧ (∫2𝐹) ∈ ℝ*) → (𝑥 < (∫2𝐹) ↔ ¬ (∫2𝐹) ≤ 𝑥))
154152, 11, 153syl2anr 576 . . . . . . . . . . . . . . 15 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (𝑥 < (∫2𝐹) ↔ ¬ (∫2𝐹) ≤ 𝑥))
155152ad2antlr 698 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → 𝑥 ∈ ℝ*)
15640adantlr 686 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*)
157 xrltnle 10306 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ* ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*) → (𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥))
158155, 156, 157syl2anc 565 . . . . . . . . . . . . . . . . 17 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) ∧ 𝑛 ∈ ℕ) → (𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥))
159158rexbidva 3196 . . . . . . . . . . . . . . . 16 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ∃𝑛 ∈ ℕ ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥))
160 rexnal 3142 . . . . . . . . . . . . . . . 16 (∃𝑛 ∈ ℕ ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 ↔ ¬ ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥)
161159, 160syl6bb 276 . . . . . . . . . . . . . . 15 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (∃𝑛 ∈ ℕ 𝑥 < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ¬ ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥))
162151, 154, 1613imtr3d 282 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (¬ (∫2𝐹) ≤ 𝑥 → ¬ ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥))
163162con4d 115 . . . . . . . . . . . . 13 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
16411adantr 466 . . . . . . . . . . . . . . . 16 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = +∞) → (∫2𝐹) ∈ ℝ*)
165 pnfge 12168 . . . . . . . . . . . . . . . 16 ((∫2𝐹) ∈ ℝ* → (∫2𝐹) ≤ +∞)
166164, 165syl 17 . . . . . . . . . . . . . . 15 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = +∞) → (∫2𝐹) ≤ +∞)
167 simpr 471 . . . . . . . . . . . . . . 15 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = +∞) → 𝑥 = +∞)
168166, 167breqtrrd 4812 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = +∞) → (∫2𝐹) ≤ 𝑥)
169168a1d 25 . . . . . . . . . . . . 13 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = +∞) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
170 1nn 11232 . . . . . . . . . . . . . . . 16 1 ∈ ℕ
171170ne0ii 4069 . . . . . . . . . . . . . . 15 ℕ ≠ ∅
172 r19.2z 4199 . . . . . . . . . . . . . . 15 ((ℕ ≠ ∅ ∧ ∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥) → ∃𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥)
173171, 172mpan 662 . . . . . . . . . . . . . 14 (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → ∃𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥)
17439adantlr 686 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) ∧ 𝑛 ∈ ℕ) → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ)
175 mnflt 12161 . . . . . . . . . . . . . . . . . . 19 (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ → -∞ < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))))
176 rexr 10286 . . . . . . . . . . . . . . . . . . . 20 (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ → if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*)
177 xrltnle 10306 . . . . . . . . . . . . . . . . . . . 20 ((-∞ ∈ ℝ* ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ*) → (-∞ < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ -∞))
17816, 176, 177sylancr 567 . . . . . . . . . . . . . . . . . . 19 (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ → (-∞ < if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ↔ ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ -∞))
179175, 178mpbid 222 . . . . . . . . . . . . . . . . . 18 (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ∈ ℝ → ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ -∞)
180174, 179syl 17 . . . . . . . . . . . . . . . . 17 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) ∧ 𝑛 ∈ ℕ) → ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ -∞)
181 simplr 744 . . . . . . . . . . . . . . . . . 18 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) ∧ 𝑛 ∈ ℕ) → 𝑥 = -∞)
182181breq2d 4796 . . . . . . . . . . . . . . . . 17 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) ∧ 𝑛 ∈ ℕ) → (if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 ↔ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ -∞))
183180, 182mtbird 314 . . . . . . . . . . . . . . . 16 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) ∧ 𝑛 ∈ ℕ) → ¬ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥)
184183nrexdv 3148 . . . . . . . . . . . . . . 15 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) → ¬ ∃𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥)
185184pm2.21d 119 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) → (∃𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
186173, 185syl5 34 . . . . . . . . . . . . 13 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 = -∞) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
187163, 169, 1863jaodan 1541 . . . . . . . . . . . 12 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑥 ∈ ℝ ∨ 𝑥 = +∞ ∨ 𝑥 = -∞)) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
188124, 187sylan2b 573 . . . . . . . . . . 11 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑥 ∈ ℝ*) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
189188ralrimiva 3114 . . . . . . . . . 10 (𝐹:ℝ⟶(0[,]+∞) → ∀𝑥 ∈ ℝ* (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
190189adantr 466 . . . . . . . . 9 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ∀𝑥 ∈ ℝ* (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ 𝑥 → (∫2𝐹) ≤ 𝑥))
19188ad2antrl 699 . . . . . . . . . . . . 13 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))):ℕ⟶ℝ)
192191, 90syl 17 . . . . . . . . . . . 12 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ)
193192, 92syl6ss 3762 . . . . . . . . . . 11 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ*)
194193, 110syl 17 . . . . . . . . . 10 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ∈ ℝ*)
195109, 194syl5eqelr 2854 . . . . . . . . 9 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) ∈ ℝ*)
196123, 190, 195rspcdva 3464 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (∀𝑛 ∈ ℕ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ) → (∫2𝐹) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < )))
197119, 196mpd 15 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (∫2𝐹) ≤ sup(ran (𝑚 ∈ ℕ ↦ (∫1‘(𝑔𝑚))), ℝ*, < ))
198197, 109syl6breqr 4826 . . . . . 6 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (∫2𝐹) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ))
199 itg2ub 23719 . . . . . . . . . . . . . . 15 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔𝑛) ∈ dom ∫1 ∧ (𝑔𝑛) ∘𝑟𝐹) → (∫1‘(𝑔𝑛)) ≤ (∫2𝐹))
2001993expia 1113 . . . . . . . . . . . . . 14 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔𝑛) ∈ dom ∫1) → ((𝑔𝑛) ∘𝑟𝐹 → (∫1‘(𝑔𝑛)) ≤ (∫2𝐹)))
20176, 200sylan2 572 . . . . . . . . . . . . 13 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1𝑛 ∈ ℕ)) → ((𝑔𝑛) ∘𝑟𝐹 → (∫1‘(𝑔𝑛)) ≤ (∫2𝐹)))
202201anassrs 458 . . . . . . . . . . . 12 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → ((𝑔𝑛) ∘𝑟𝐹 → (∫1‘(𝑔𝑛)) ≤ (∫2𝐹)))
203202adantrd 475 . . . . . . . . . . 11 (((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) ∧ 𝑛 ∈ ℕ) → (((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))) → (∫1‘(𝑔𝑛)) ≤ (∫2𝐹)))
204203ralimdva 3110 . . . . . . . . . 10 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) → (∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))) → ∀𝑛 ∈ ℕ (∫1‘(𝑔𝑛)) ≤ (∫2𝐹)))
205204impr 442 . . . . . . . . 9 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ∀𝑛 ∈ ℕ (∫1‘(𝑔𝑛)) ≤ (∫2𝐹))
20684, 87, 101fvmpt 6424 . . . . . . . . . . . 12 (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) = (∫1‘(𝑔𝑚)))
207206breq1d 4794 . . . . . . . . . . 11 (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹) ↔ (∫1‘(𝑔𝑚)) ≤ (∫2𝐹)))
208207ralbiia 3127 . . . . . . . . . 10 (∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹) ↔ ∀𝑚 ∈ ℕ (∫1‘(𝑔𝑚)) ≤ (∫2𝐹))
20984breq1d 4794 . . . . . . . . . . 11 (𝑛 = 𝑚 → ((∫1‘(𝑔𝑛)) ≤ (∫2𝐹) ↔ (∫1‘(𝑔𝑚)) ≤ (∫2𝐹)))
210209cbvralv 3319 . . . . . . . . . 10 (∀𝑛 ∈ ℕ (∫1‘(𝑔𝑛)) ≤ (∫2𝐹) ↔ ∀𝑚 ∈ ℕ (∫1‘(𝑔𝑚)) ≤ (∫2𝐹))
211208, 210bitr4i 267 . . . . . . . . 9 (∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹) ↔ ∀𝑛 ∈ ℕ (∫1‘(𝑔𝑛)) ≤ (∫2𝐹))
212205, 211sylibr 224 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹))
213 ffn 6185 . . . . . . . . 9 ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))):ℕ⟶ℝ → (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) Fn ℕ)
214 breq1 4787 . . . . . . . . . 10 (𝑧 = ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) → (𝑧 ≤ (∫2𝐹) ↔ ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹)))
215214ralrn 6505 . . . . . . . . 9 ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) Fn ℕ → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))𝑧 ≤ (∫2𝐹) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹)))
216191, 213, 2153syl 18 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))𝑧 ≤ (∫2𝐹) ↔ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))‘𝑚) ≤ (∫2𝐹)))
217212, 216mpbird 247 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))𝑧 ≤ (∫2𝐹))
21811adantr 466 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (∫2𝐹) ∈ ℝ*)
219 supxrleub 12360 . . . . . . . 8 ((ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))) ⊆ ℝ* ∧ (∫2𝐹) ∈ ℝ*) → (sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ≤ (∫2𝐹) ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))𝑧 ≤ (∫2𝐹)))
220193, 218, 219syl2anc 565 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ≤ (∫2𝐹) ↔ ∀𝑧 ∈ ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛)))𝑧 ≤ (∫2𝐹)))
221217, 220mpbird 247 . . . . . 6 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ≤ (∫2𝐹))
22211adantr 466 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) → (∫2𝐹) ∈ ℝ*)
22393, 110syl 17 . . . . . . . 8 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) → sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ∈ ℝ*)
224 xrletri3 12189 . . . . . . . 8 (((∫2𝐹) ∈ ℝ* ∧ sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ∈ ℝ*) → ((∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ↔ ((∫2𝐹) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ∧ sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ≤ (∫2𝐹))))
225222, 223, 224syl2anc 565 . . . . . . 7 ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝑔:ℕ⟶dom ∫1) → ((∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ↔ ((∫2𝐹) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ∧ sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ≤ (∫2𝐹))))
226225adantrr 688 . . . . . 6 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → ((∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ↔ ((∫2𝐹) ≤ sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ∧ sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ) ≤ (∫2𝐹))))
227198, 221, 226mpbir2and 684 . . . . 5 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ))
22871, 74, 2273jca 1121 . . . 4 ((𝐹:ℝ⟶(0[,]+∞) ∧ (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛))))) → (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∘𝑟𝐹 ∧ (∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < )))
229228ex 397 . . 3 (𝐹:ℝ⟶(0[,]+∞) → ((𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)))) → (𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∘𝑟𝐹 ∧ (∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ))))
230229eximdv 1997 . 2 (𝐹:ℝ⟶(0[,]+∞) → (∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ ((𝑔𝑛) ∘𝑟𝐹 ∧ if((∫2𝐹) = +∞, 𝑛, ((∫2𝐹) − (1 / 𝑛))) < (∫1‘(𝑔𝑛)))) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∘𝑟𝐹 ∧ (∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < ))))
23170, 230mpd 15 1 (𝐹:ℝ⟶(0[,]+∞) → ∃𝑔(𝑔:ℕ⟶dom ∫1 ∧ ∀𝑛 ∈ ℕ (𝑔𝑛) ∘𝑟𝐹 ∧ (∫2𝐹) = sup(ran (𝑛 ∈ ℕ ↦ (∫1‘(𝑔𝑛))), ℝ*, < )))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 382   ∨ w3o 1069   ∧ w3a 1070   = wceq 1630  ∃wex 1851   ∈ wcel 2144   ≠ wne 2942  ∀wral 3060  ∃wrex 3061   ⊆ wss 3721  ∅c0 4061  ifcif 4223   class class class wbr 4784   ↦ cmpt 4861  dom cdm 5249  ran crn 5250   Fn wfn 6026  ⟶wf 6027  ‘cfv 6031  (class class class)co 6792   ∘𝑟 cofr 7042   ↑𝑚 cmap 8008  supcsup 8501  ℝcr 10136  0cc0 10137  1c1 10138  +∞cpnf 10272  -∞cmnf 10273  ℝ*cxr 10274   < clt 10275   ≤ cle 10276   − cmin 10467   / cdiv 10885  ℕcn 11221  ℝ+crp 12034  [,]cicc 12382  ∫1citg1 23602  ∫2citg2 23603 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cc 9458  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-ofr 7044  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-oadd 7716  df-er 7895  df-map 8010  df-pm 8011  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-inf 8504  df-oi 8570  df-card 8964  df-cda 9191  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-n0 11494  df-z 11579  df-uz 11888  df-q 11991  df-rp 12035  df-xadd 12151  df-ioo 12383  df-ico 12385  df-icc 12386  df-fz 12533  df-fzo 12673  df-fl 12800  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-sum 14624  df-xmet 19953  df-met 19954  df-ovol 23451  df-vol 23452  df-mbf 23606  df-itg1 23607  df-itg2 23608 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator