MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2mulc Structured version   Visualization version   GIF version

Theorem itg2mulc 23684
Description: The integral of a nonnegative constant times a function is the constant times the integral of the original function. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
itg2mulc.2 (𝜑𝐹:ℝ⟶(0[,)+∞))
itg2mulc.3 (𝜑 → (∫2𝐹) ∈ ℝ)
itg2mulc.4 (𝜑𝐴 ∈ (0[,)+∞))
Assertion
Ref Expression
itg2mulc (𝜑 → (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) = (𝐴 · (∫2𝐹)))

Proof of Theorem itg2mulc
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 itg2mulc.2 . . . . 5 (𝜑𝐹:ℝ⟶(0[,)+∞))
21adantr 472 . . . 4 ((𝜑 ∧ 0 < 𝐴) → 𝐹:ℝ⟶(0[,)+∞))
3 itg2mulc.3 . . . . 5 (𝜑 → (∫2𝐹) ∈ ℝ)
43adantr 472 . . . 4 ((𝜑 ∧ 0 < 𝐴) → (∫2𝐹) ∈ ℝ)
5 itg2mulc.4 . . . . . . . 8 (𝜑𝐴 ∈ (0[,)+∞))
6 elrege0 12442 . . . . . . . 8 (𝐴 ∈ (0[,)+∞) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
75, 6sylib 208 . . . . . . 7 (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
87simpld 477 . . . . . 6 (𝜑𝐴 ∈ ℝ)
98anim1i 593 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
10 elrp 11998 . . . . 5 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
119, 10sylibr 224 . . . 4 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℝ+)
122, 4, 11itg2mulclem 23683 . . 3 ((𝜑 ∧ 0 < 𝐴) → (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) ≤ (𝐴 · (∫2𝐹)))
13 ge0mulcl 12449 . . . . . . . . 9 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 𝑦) ∈ (0[,)+∞))
1413adantl 473 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 · 𝑦) ∈ (0[,)+∞))
15 fconst6g 6243 . . . . . . . . 9 (𝐴 ∈ (0[,)+∞) → (ℝ × {𝐴}):ℝ⟶(0[,)+∞))
165, 15syl 17 . . . . . . . 8 (𝜑 → (ℝ × {𝐴}):ℝ⟶(0[,)+∞))
17 reex 10190 . . . . . . . . 9 ℝ ∈ V
1817a1i 11 . . . . . . . 8 (𝜑 → ℝ ∈ V)
19 inidm 3953 . . . . . . . 8 (ℝ ∩ ℝ) = ℝ
2014, 16, 1, 18, 18, 19off 7065 . . . . . . 7 (𝜑 → ((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶(0[,)+∞))
2120adantr 472 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → ((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶(0[,)+∞))
22 icossicc 12424 . . . . . . . . 9 (0[,)+∞) ⊆ (0[,]+∞)
23 fss 6205 . . . . . . . . 9 ((((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ (0[,]+∞)) → ((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶(0[,]+∞))
2420, 22, 23sylancl 697 . . . . . . . 8 (𝜑 → ((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶(0[,]+∞))
2524adantr 472 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → ((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶(0[,]+∞))
268, 3remulcld 10233 . . . . . . . 8 (𝜑 → (𝐴 · (∫2𝐹)) ∈ ℝ)
2726adantr 472 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → (𝐴 · (∫2𝐹)) ∈ ℝ)
28 itg2lecl 23675 . . . . . . 7 ((((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶(0[,]+∞) ∧ (𝐴 · (∫2𝐹)) ∈ ℝ ∧ (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) ≤ (𝐴 · (∫2𝐹))) → (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) ∈ ℝ)
2925, 27, 12, 28syl3anc 1463 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) ∈ ℝ)
3011rpreccld 12046 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ+)
3121, 29, 30itg2mulclem 23683 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → (∫2‘((ℝ × {(1 / 𝐴)}) ∘𝑓 · ((ℝ × {𝐴}) ∘𝑓 · 𝐹))) ≤ ((1 / 𝐴) · (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹))))
322feqmptd 6399 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → 𝐹 = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
33 rge0ssre 12444 . . . . . . . . . . . . . 14 (0[,)+∞) ⊆ ℝ
34 ax-resscn 10156 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
3533, 34sstri 3741 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ ℂ
36 fss 6205 . . . . . . . . . . . . 13 ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℂ) → 𝐹:ℝ⟶ℂ)
371, 35, 36sylancl 697 . . . . . . . . . . . 12 (𝜑𝐹:ℝ⟶ℂ)
3837adantr 472 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → 𝐹:ℝ⟶ℂ)
3938ffvelrnda 6510 . . . . . . . . . 10 (((𝜑 ∧ 0 < 𝐴) ∧ 𝑦 ∈ ℝ) → (𝐹𝑦) ∈ ℂ)
4039mulid2d 10221 . . . . . . . . 9 (((𝜑 ∧ 0 < 𝐴) ∧ 𝑦 ∈ ℝ) → (1 · (𝐹𝑦)) = (𝐹𝑦))
4140mpteq2dva 4884 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → (𝑦 ∈ ℝ ↦ (1 · (𝐹𝑦))) = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
4232, 41eqtr4d 2785 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → 𝐹 = (𝑦 ∈ ℝ ↦ (1 · (𝐹𝑦))))
4317a1i 11 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → ℝ ∈ V)
44 1red 10218 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐴) ∧ 𝑦 ∈ ℝ) → 1 ∈ ℝ)
4543, 30, 11ofc12 7075 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → ((ℝ × {(1 / 𝐴)}) ∘𝑓 · (ℝ × {𝐴})) = (ℝ × {((1 / 𝐴) · 𝐴)}))
46 fconstmpt 5308 . . . . . . . . . 10 (ℝ × {((1 / 𝐴) · 𝐴)}) = (𝑦 ∈ ℝ ↦ ((1 / 𝐴) · 𝐴))
4745, 46syl6eq 2798 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → ((ℝ × {(1 / 𝐴)}) ∘𝑓 · (ℝ × {𝐴})) = (𝑦 ∈ ℝ ↦ ((1 / 𝐴) · 𝐴)))
488recnd 10231 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
4948adantr 472 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ∈ ℂ)
5011rpne0d 12041 . . . . . . . . . . 11 ((𝜑 ∧ 0 < 𝐴) → 𝐴 ≠ 0)
5149, 50recid2d 10960 . . . . . . . . . 10 ((𝜑 ∧ 0 < 𝐴) → ((1 / 𝐴) · 𝐴) = 1)
5251mpteq2dv 4885 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → (𝑦 ∈ ℝ ↦ ((1 / 𝐴) · 𝐴)) = (𝑦 ∈ ℝ ↦ 1))
5347, 52eqtrd 2782 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → ((ℝ × {(1 / 𝐴)}) ∘𝑓 · (ℝ × {𝐴})) = (𝑦 ∈ ℝ ↦ 1))
5443, 44, 39, 53, 32offval2 7067 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → (((ℝ × {(1 / 𝐴)}) ∘𝑓 · (ℝ × {𝐴})) ∘𝑓 · 𝐹) = (𝑦 ∈ ℝ ↦ (1 · (𝐹𝑦))))
5530rpcnd 12038 . . . . . . . . 9 ((𝜑 ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℂ)
56 fconst6g 6243 . . . . . . . . 9 ((1 / 𝐴) ∈ ℂ → (ℝ × {(1 / 𝐴)}):ℝ⟶ℂ)
5755, 56syl 17 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → (ℝ × {(1 / 𝐴)}):ℝ⟶ℂ)
58 fconst6g 6243 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℝ × {𝐴}):ℝ⟶ℂ)
5949, 58syl 17 . . . . . . . 8 ((𝜑 ∧ 0 < 𝐴) → (ℝ × {𝐴}):ℝ⟶ℂ)
60 mulass 10187 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
6160adantl 473 . . . . . . . 8 (((𝜑 ∧ 0 < 𝐴) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
6243, 57, 59, 38, 61caofass 7084 . . . . . . 7 ((𝜑 ∧ 0 < 𝐴) → (((ℝ × {(1 / 𝐴)}) ∘𝑓 · (ℝ × {𝐴})) ∘𝑓 · 𝐹) = ((ℝ × {(1 / 𝐴)}) ∘𝑓 · ((ℝ × {𝐴}) ∘𝑓 · 𝐹)))
6342, 54, 623eqtr2d 2788 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → 𝐹 = ((ℝ × {(1 / 𝐴)}) ∘𝑓 · ((ℝ × {𝐴}) ∘𝑓 · 𝐹)))
6463fveq2d 6344 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → (∫2𝐹) = (∫2‘((ℝ × {(1 / 𝐴)}) ∘𝑓 · ((ℝ × {𝐴}) ∘𝑓 · 𝐹))))
6529recnd 10231 . . . . . 6 ((𝜑 ∧ 0 < 𝐴) → (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) ∈ ℂ)
6665, 49, 50divrec2d 10968 . . . . 5 ((𝜑 ∧ 0 < 𝐴) → ((∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) / 𝐴) = ((1 / 𝐴) · (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹))))
6731, 64, 663brtr4d 4824 . . . 4 ((𝜑 ∧ 0 < 𝐴) → (∫2𝐹) ≤ ((∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) / 𝐴))
684, 29, 11lemuldiv2d 12086 . . . 4 ((𝜑 ∧ 0 < 𝐴) → ((𝐴 · (∫2𝐹)) ≤ (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) ↔ (∫2𝐹) ≤ ((∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) / 𝐴)))
6967, 68mpbird 247 . . 3 ((𝜑 ∧ 0 < 𝐴) → (𝐴 · (∫2𝐹)) ≤ (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)))
70 itg2cl 23669 . . . . . 6 (((ℝ × {𝐴}) ∘𝑓 · 𝐹):ℝ⟶(0[,]+∞) → (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) ∈ ℝ*)
7124, 70syl 17 . . . . 5 (𝜑 → (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) ∈ ℝ*)
7226rexrd 10252 . . . . 5 (𝜑 → (𝐴 · (∫2𝐹)) ∈ ℝ*)
73 xrletri3 12149 . . . . 5 (((∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) ∈ ℝ* ∧ (𝐴 · (∫2𝐹)) ∈ ℝ*) → ((∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) = (𝐴 · (∫2𝐹)) ↔ ((∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) ≤ (𝐴 · (∫2𝐹)) ∧ (𝐴 · (∫2𝐹)) ≤ (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)))))
7471, 72, 73syl2anc 696 . . . 4 (𝜑 → ((∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) = (𝐴 · (∫2𝐹)) ↔ ((∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) ≤ (𝐴 · (∫2𝐹)) ∧ (𝐴 · (∫2𝐹)) ≤ (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)))))
7574adantr 472 . . 3 ((𝜑 ∧ 0 < 𝐴) → ((∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) = (𝐴 · (∫2𝐹)) ↔ ((∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) ≤ (𝐴 · (∫2𝐹)) ∧ (𝐴 · (∫2𝐹)) ≤ (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)))))
7612, 69, 75mpbir2and 995 . 2 ((𝜑 ∧ 0 < 𝐴) → (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) = (𝐴 · (∫2𝐹)))
7717a1i 11 . . . . . 6 ((𝜑 ∧ 0 = 𝐴) → ℝ ∈ V)
7837adantr 472 . . . . . 6 ((𝜑 ∧ 0 = 𝐴) → 𝐹:ℝ⟶ℂ)
798adantr 472 . . . . . 6 ((𝜑 ∧ 0 = 𝐴) → 𝐴 ∈ ℝ)
80 0re 10203 . . . . . . 7 0 ∈ ℝ
8180a1i 11 . . . . . 6 ((𝜑 ∧ 0 = 𝐴) → 0 ∈ ℝ)
82 simplr 809 . . . . . . . 8 (((𝜑 ∧ 0 = 𝐴) ∧ 𝑥 ∈ ℂ) → 0 = 𝐴)
8382oveq1d 6816 . . . . . . 7 (((𝜑 ∧ 0 = 𝐴) ∧ 𝑥 ∈ ℂ) → (0 · 𝑥) = (𝐴 · 𝑥))
84 mul02 10377 . . . . . . . 8 (𝑥 ∈ ℂ → (0 · 𝑥) = 0)
8584adantl 473 . . . . . . 7 (((𝜑 ∧ 0 = 𝐴) ∧ 𝑥 ∈ ℂ) → (0 · 𝑥) = 0)
8683, 85eqtr3d 2784 . . . . . 6 (((𝜑 ∧ 0 = 𝐴) ∧ 𝑥 ∈ ℂ) → (𝐴 · 𝑥) = 0)
8777, 78, 79, 81, 86caofid2 7081 . . . . 5 ((𝜑 ∧ 0 = 𝐴) → ((ℝ × {𝐴}) ∘𝑓 · 𝐹) = (ℝ × {0}))
8887fveq2d 6344 . . . 4 ((𝜑 ∧ 0 = 𝐴) → (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) = (∫2‘(ℝ × {0})))
89 itg20 23674 . . . 4 (∫2‘(ℝ × {0})) = 0
9088, 89syl6eq 2798 . . 3 ((𝜑 ∧ 0 = 𝐴) → (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) = 0)
913adantr 472 . . . . 5 ((𝜑 ∧ 0 = 𝐴) → (∫2𝐹) ∈ ℝ)
9291recnd 10231 . . . 4 ((𝜑 ∧ 0 = 𝐴) → (∫2𝐹) ∈ ℂ)
9392mul02d 10397 . . 3 ((𝜑 ∧ 0 = 𝐴) → (0 · (∫2𝐹)) = 0)
94 simpr 479 . . . 4 ((𝜑 ∧ 0 = 𝐴) → 0 = 𝐴)
9594oveq1d 6816 . . 3 ((𝜑 ∧ 0 = 𝐴) → (0 · (∫2𝐹)) = (𝐴 · (∫2𝐹)))
9690, 93, 953eqtr2d 2788 . 2 ((𝜑 ∧ 0 = 𝐴) → (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) = (𝐴 · (∫2𝐹)))
977simprd 482 . . 3 (𝜑 → 0 ≤ 𝐴)
98 leloe 10287 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
9980, 8, 98sylancr 698 . . 3 (𝜑 → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
10097, 99mpbid 222 . 2 (𝜑 → (0 < 𝐴 ∨ 0 = 𝐴))
10176, 96, 100mpjaodan 862 1 (𝜑 → (∫2‘((ℝ × {𝐴}) ∘𝑓 · 𝐹)) = (𝐴 · (∫2𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3a 1072   = wceq 1620  wcel 2127  Vcvv 3328  wss 3703  {csn 4309   class class class wbr 4792  cmpt 4869   × cxp 5252  wf 6033  cfv 6037  (class class class)co 6801  𝑓 cof 7048  cc 10097  cr 10098  0cc0 10099  1c1 10100   · cmul 10104  +∞cpnf 10234  *cxr 10236   < clt 10237  cle 10238   / cdiv 10847  +crp 11996  [,)cico 12341  [,]cicc 12342  2citg2 23555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-inf2 8699  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-pre-sup 10177  ax-addf 10178
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-fal 1626  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-disj 4761  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-se 5214  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-isom 6046  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-of 7050  df-ofr 7051  df-om 7219  df-1st 7321  df-2nd 7322  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7899  df-map 8013  df-pm 8014  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8501  df-inf 8502  df-oi 8568  df-card 8926  df-cda 9153  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-2 11242  df-3 11243  df-n0 11456  df-z 11541  df-uz 11851  df-q 11953  df-rp 11997  df-xadd 12111  df-ioo 12343  df-ico 12345  df-icc 12346  df-fz 12491  df-fzo 12631  df-fl 12758  df-seq 12967  df-exp 13026  df-hash 13283  df-cj 14009  df-re 14010  df-im 14011  df-sqrt 14145  df-abs 14146  df-clim 14389  df-sum 14587  df-xmet 19912  df-met 19913  df-ovol 23404  df-vol 23405  df-mbf 23558  df-itg1 23559  df-itg2 23560  df-0p 23607
This theorem is referenced by:  iblmulc2  23767  itgmulc2lem1  23768  bddmulibl  23775  iblmulc2nc  33757  itgmulc2nclem1  33758
  Copyright terms: Public domain W3C validator