![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itg2itg1 | Structured version Visualization version GIF version |
Description: The integral of a nonnegative simple function using ∫2 is the same as its value under ∫1. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
itg2itg1 | ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘𝑟 ≤ 𝐹) → (∫2‘𝐹) = (∫1‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itg1le 23679 | . . . . . . 7 ⊢ ((𝑔 ∈ dom ∫1 ∧ 𝐹 ∈ dom ∫1 ∧ 𝑔 ∘𝑟 ≤ 𝐹) → (∫1‘𝑔) ≤ (∫1‘𝐹)) | |
2 | 1 | 3expia 1115 | . . . . . 6 ⊢ ((𝑔 ∈ dom ∫1 ∧ 𝐹 ∈ dom ∫1) → (𝑔 ∘𝑟 ≤ 𝐹 → (∫1‘𝑔) ≤ (∫1‘𝐹))) |
3 | 2 | ancoms 468 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1) → (𝑔 ∘𝑟 ≤ 𝐹 → (∫1‘𝑔) ≤ (∫1‘𝐹))) |
4 | 3 | ralrimiva 3104 | . . . 4 ⊢ (𝐹 ∈ dom ∫1 → ∀𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 → (∫1‘𝑔) ≤ (∫1‘𝐹))) |
5 | 4 | adantr 472 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘𝑟 ≤ 𝐹) → ∀𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 → (∫1‘𝑔) ≤ (∫1‘𝐹))) |
6 | i1ff 23642 | . . . . 5 ⊢ (𝐹 ∈ dom ∫1 → 𝐹:ℝ⟶ℝ) | |
7 | xrge0f 23697 | . . . . 5 ⊢ ((𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘𝑟 ≤ 𝐹) → 𝐹:ℝ⟶(0[,]+∞)) | |
8 | 6, 7 | sylan 489 | . . . 4 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘𝑟 ≤ 𝐹) → 𝐹:ℝ⟶(0[,]+∞)) |
9 | itg1cl 23651 | . . . . . 6 ⊢ (𝐹 ∈ dom ∫1 → (∫1‘𝐹) ∈ ℝ) | |
10 | 9 | adantr 472 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘𝑟 ≤ 𝐹) → (∫1‘𝐹) ∈ ℝ) |
11 | 10 | rexrd 10281 | . . . 4 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘𝑟 ≤ 𝐹) → (∫1‘𝐹) ∈ ℝ*) |
12 | itg2leub 23700 | . . . 4 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ (∫1‘𝐹) ∈ ℝ*) → ((∫2‘𝐹) ≤ (∫1‘𝐹) ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 → (∫1‘𝑔) ≤ (∫1‘𝐹)))) | |
13 | 8, 11, 12 | syl2anc 696 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘𝑟 ≤ 𝐹) → ((∫2‘𝐹) ≤ (∫1‘𝐹) ↔ ∀𝑔 ∈ dom ∫1(𝑔 ∘𝑟 ≤ 𝐹 → (∫1‘𝑔) ≤ (∫1‘𝐹)))) |
14 | 5, 13 | mpbird 247 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘𝑟 ≤ 𝐹) → (∫2‘𝐹) ≤ (∫1‘𝐹)) |
15 | simpl 474 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘𝑟 ≤ 𝐹) → 𝐹 ∈ dom ∫1) | |
16 | reex 10219 | . . . . . 6 ⊢ ℝ ∈ V | |
17 | 16 | a1i 11 | . . . . 5 ⊢ (𝐹 ∈ dom ∫1 → ℝ ∈ V) |
18 | leid 10325 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → 𝑥 ≤ 𝑥) | |
19 | 18 | adantl 473 | . . . . 5 ⊢ ((𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ) → 𝑥 ≤ 𝑥) |
20 | 17, 6, 19 | caofref 7088 | . . . 4 ⊢ (𝐹 ∈ dom ∫1 → 𝐹 ∘𝑟 ≤ 𝐹) |
21 | 20 | adantr 472 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘𝑟 ≤ 𝐹) → 𝐹 ∘𝑟 ≤ 𝐹) |
22 | itg2ub 23699 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,]+∞) ∧ 𝐹 ∈ dom ∫1 ∧ 𝐹 ∘𝑟 ≤ 𝐹) → (∫1‘𝐹) ≤ (∫2‘𝐹)) | |
23 | 8, 15, 21, 22 | syl3anc 1477 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘𝑟 ≤ 𝐹) → (∫1‘𝐹) ≤ (∫2‘𝐹)) |
24 | itg2cl 23698 | . . . 4 ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫2‘𝐹) ∈ ℝ*) | |
25 | 8, 24 | syl 17 | . . 3 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘𝑟 ≤ 𝐹) → (∫2‘𝐹) ∈ ℝ*) |
26 | xrletri3 12178 | . . 3 ⊢ (((∫2‘𝐹) ∈ ℝ* ∧ (∫1‘𝐹) ∈ ℝ*) → ((∫2‘𝐹) = (∫1‘𝐹) ↔ ((∫2‘𝐹) ≤ (∫1‘𝐹) ∧ (∫1‘𝐹) ≤ (∫2‘𝐹)))) | |
27 | 25, 11, 26 | syl2anc 696 | . 2 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘𝑟 ≤ 𝐹) → ((∫2‘𝐹) = (∫1‘𝐹) ↔ ((∫2‘𝐹) ≤ (∫1‘𝐹) ∧ (∫1‘𝐹) ≤ (∫2‘𝐹)))) |
28 | 14, 23, 27 | mpbir2and 995 | 1 ⊢ ((𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘𝑟 ≤ 𝐹) → (∫2‘𝐹) = (∫1‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∀wral 3050 Vcvv 3340 class class class wbr 4804 dom cdm 5266 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 ∘𝑟 cofr 7061 ℝcr 10127 0cc0 10128 +∞cpnf 10263 ℝ*cxr 10265 ≤ cle 10267 [,]cicc 12371 ∫1citg1 23583 ∫2citg2 23584 0𝑝c0p 23635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-inf2 8711 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-pre-sup 10206 ax-addf 10207 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-disj 4773 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-of 7062 df-ofr 7063 df-om 7231 df-1st 7333 df-2nd 7334 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-2o 7730 df-oadd 7733 df-er 7911 df-map 8025 df-pm 8026 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-sup 8513 df-inf 8514 df-oi 8580 df-card 8955 df-cda 9182 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-div 10877 df-nn 11213 df-2 11271 df-3 11272 df-n0 11485 df-z 11570 df-uz 11880 df-q 11982 df-rp 12026 df-xadd 12140 df-ioo 12372 df-ico 12374 df-icc 12375 df-fz 12520 df-fzo 12660 df-fl 12787 df-seq 12996 df-exp 13055 df-hash 13312 df-cj 14038 df-re 14039 df-im 14040 df-sqrt 14174 df-abs 14175 df-clim 14418 df-sum 14616 df-xmet 19941 df-met 19942 df-ovol 23433 df-vol 23434 df-mbf 23587 df-itg1 23588 df-itg2 23589 df-0p 23636 |
This theorem is referenced by: itg20 23703 itg2const 23706 itg2i1fseq 23721 i1fibl 23773 itgitg1 23774 ftc1anclem5 33802 ftc1anclem7 33804 ftc1anclem8 33805 |
Copyright terms: Public domain | W3C validator |