MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2const Structured version   Visualization version   GIF version

Theorem itg2const 23727
Description: Integral of a constant function. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
itg2const ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝐵 · (vol‘𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem itg2const
StepHypRef Expression
1 reex 10229 . . . . . . 7 ℝ ∈ V
21a1i 11 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ℝ ∈ V)
3 simpl3 1231 . . . . . 6 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ (0[,)+∞))
4 1re 10241 . . . . . . . 8 1 ∈ ℝ
5 0re 10242 . . . . . . . 8 0 ∈ ℝ
64, 5keepel 4294 . . . . . . 7 if(𝑥𝐴, 1, 0) ∈ ℝ
76a1i 11 . . . . . 6 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, 1, 0) ∈ ℝ)
8 fconstmpt 5303 . . . . . . 7 (ℝ × {𝐵}) = (𝑥 ∈ ℝ ↦ 𝐵)
98a1i 11 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (ℝ × {𝐵}) = (𝑥 ∈ ℝ ↦ 𝐵))
10 eqidd 2772 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)))
112, 3, 7, 9, 10offval2 7061 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ((ℝ × {𝐵}) ∘𝑓 · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))) = (𝑥 ∈ ℝ ↦ (𝐵 · if(𝑥𝐴, 1, 0))))
12 ovif2 6885 . . . . . . 7 (𝐵 · if(𝑥𝐴, 1, 0)) = if(𝑥𝐴, (𝐵 · 1), (𝐵 · 0))
13 simp3 1132 . . . . . . . . . . . 12 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → 𝐵 ∈ (0[,)+∞))
14 elrege0 12485 . . . . . . . . . . . 12 (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
1513, 14sylib 208 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
1615simpld 482 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → 𝐵 ∈ ℝ)
1716recnd 10270 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → 𝐵 ∈ ℂ)
1817mulid1d 10259 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝐵 · 1) = 𝐵)
1917mul01d 10437 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝐵 · 0) = 0)
2018, 19ifeq12d 4245 . . . . . . 7 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → if(𝑥𝐴, (𝐵 · 1), (𝐵 · 0)) = if(𝑥𝐴, 𝐵, 0))
2112, 20syl5eq 2817 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝐵 · if(𝑥𝐴, 1, 0)) = if(𝑥𝐴, 𝐵, 0))
2221mpteq2dv 4879 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝑥 ∈ ℝ ↦ (𝐵 · if(𝑥𝐴, 1, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
2311, 22eqtrd 2805 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ((ℝ × {𝐵}) ∘𝑓 · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
24 eqid 2771 . . . . . . 7 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))
2524i1f1 23677 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)) ∈ dom ∫1)
26253adant3 1126 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)) ∈ dom ∫1)
2726, 16i1fmulc 23690 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ((ℝ × {𝐵}) ∘𝑓 · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))) ∈ dom ∫1)
2823, 27eqeltrrd 2851 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∈ dom ∫1)
2915simprd 483 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → 0 ≤ 𝐵)
30 0le0 11312 . . . . . 6 0 ≤ 0
31 breq2 4790 . . . . . . 7 (𝐵 = if(𝑥𝐴, 𝐵, 0) → (0 ≤ 𝐵 ↔ 0 ≤ if(𝑥𝐴, 𝐵, 0)))
32 breq2 4790 . . . . . . 7 (0 = if(𝑥𝐴, 𝐵, 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑥𝐴, 𝐵, 0)))
3331, 32ifboth 4263 . . . . . 6 ((0 ≤ 𝐵 ∧ 0 ≤ 0) → 0 ≤ if(𝑥𝐴, 𝐵, 0))
3429, 30, 33sylancl 574 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → 0 ≤ if(𝑥𝐴, 𝐵, 0))
3534ralrimivw 3116 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ∀𝑥 ∈ ℝ 0 ≤ if(𝑥𝐴, 𝐵, 0))
36 ax-resscn 10195 . . . . . . 7 ℝ ⊆ ℂ
3736a1i 11 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ℝ ⊆ ℂ)
3816adantr 466 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ ℝ)
39 ifcl 4269 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥𝐴, 𝐵, 0) ∈ ℝ)
4038, 5, 39sylancl 574 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐵, 0) ∈ ℝ)
4140ralrimiva 3115 . . . . . . 7 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ∀𝑥 ∈ ℝ if(𝑥𝐴, 𝐵, 0) ∈ ℝ)
42 eqid 2771 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))
4342fnmpt 6160 . . . . . . 7 (∀𝑥 ∈ ℝ if(𝑥𝐴, 𝐵, 0) ∈ ℝ → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) Fn ℝ)
4441, 43syl 17 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) Fn ℝ)
4537, 440pledm 23660 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (0𝑝𝑟 ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ↔ (ℝ × {0}) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
465a1i 11 . . . . . 6 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ ℝ) → 0 ∈ ℝ)
47 fconstmpt 5303 . . . . . . 7 (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0)
4847a1i 11 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0))
49 eqidd 2772 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
502, 46, 40, 48, 49ofrfval2 7062 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ((ℝ × {0}) ∘𝑟 ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ↔ ∀𝑥 ∈ ℝ 0 ≤ if(𝑥𝐴, 𝐵, 0)))
5145, 50bitrd 268 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (0𝑝𝑟 ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ↔ ∀𝑥 ∈ ℝ 0 ≤ if(𝑥𝐴, 𝐵, 0)))
5235, 51mpbird 247 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → 0𝑝𝑟 ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
53 itg2itg1 23723 . . 3 (((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∈ dom ∫1 ∧ 0𝑝𝑟 ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
5428, 52, 53syl2anc 573 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
5526, 16itg1mulc 23691 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫1‘((ℝ × {𝐵}) ∘𝑓 · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)))) = (𝐵 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)))))
5623fveq2d 6336 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫1‘((ℝ × {𝐵}) ∘𝑓 · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)))) = (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
5724itg11 23678 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))) = (vol‘𝐴))
58573adant3 1126 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))) = (vol‘𝐴))
5958oveq2d 6809 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝐵 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)))) = (𝐵 · (vol‘𝐴)))
6055, 56, 593eqtr3d 2813 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝐵 · (vol‘𝐴)))
6154, 60eqtrd 2805 1 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝐵 · (vol‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  Vcvv 3351  wss 3723  ifcif 4225  {csn 4316   class class class wbr 4786  cmpt 4863   × cxp 5247  dom cdm 5249   Fn wfn 6026  cfv 6031  (class class class)co 6793  𝑓 cof 7042  𝑟 cofr 7043  cc 10136  cr 10137  0cc0 10138  1c1 10139   · cmul 10143  +∞cpnf 10273  cle 10277  [,)cico 12382  volcvol 23451  1citg1 23603  2citg2 23604  0𝑝c0p 23656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-disj 4755  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-ofr 7045  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-q 11992  df-rp 12036  df-xadd 12152  df-ioo 12384  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-sum 14625  df-xmet 19954  df-met 19955  df-ovol 23452  df-vol 23453  df-mbf 23607  df-itg1 23608  df-itg2 23609  df-0p 23657
This theorem is referenced by:  itg2const2  23728  itg2gt0  23747  itg2cnlem2  23749  iblconst  23804  itgconst  23805  itg2gt0cn  33797  bddiblnc  33812  ftc1anclem7  33823
  Copyright terms: Public domain W3C validator