MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1val2 Structured version   Visualization version   GIF version

Theorem itg1val2 23671
Description: The value of the integral on simple functions. (Contributed by Mario Carneiro, 26-Jun-2014.)
Assertion
Ref Expression
itg1val2 ((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) → (∫1𝐹) = Σ𝑥𝐴 (𝑥 · (vol‘(𝐹 “ {𝑥}))))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem itg1val2
StepHypRef Expression
1 itg1val 23670 . . 3 (𝐹 ∈ dom ∫1 → (∫1𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))))
21adantr 466 . 2 ((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) → (∫1𝐹) = Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))))
3 simpr2 1235 . . 3 ((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) → (ran 𝐹 ∖ {0}) ⊆ 𝐴)
43sselda 3752 . . . 4 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → 𝑥𝐴)
5 simpr3 1237 . . . . . . . 8 ((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) → 𝐴 ⊆ (ℝ ∖ {0}))
65sselda 3752 . . . . . . 7 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥𝐴) → 𝑥 ∈ (ℝ ∖ {0}))
7 eldifi 3883 . . . . . . 7 (𝑥 ∈ (ℝ ∖ {0}) → 𝑥 ∈ ℝ)
86, 7syl 17 . . . . . 6 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥𝐴) → 𝑥 ∈ ℝ)
9 i1fima2sn 23667 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝑥 ∈ (ℝ ∖ {0})) → (vol‘(𝐹 “ {𝑥})) ∈ ℝ)
109adantlr 694 . . . . . . 7 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (ℝ ∖ {0})) → (vol‘(𝐹 “ {𝑥})) ∈ ℝ)
116, 10syldan 579 . . . . . 6 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥𝐴) → (vol‘(𝐹 “ {𝑥})) ∈ ℝ)
128, 11remulcld 10272 . . . . 5 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥𝐴) → (𝑥 · (vol‘(𝐹 “ {𝑥}))) ∈ ℝ)
1312recnd 10270 . . . 4 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥𝐴) → (𝑥 · (vol‘(𝐹 “ {𝑥}))) ∈ ℂ)
144, 13syldan 579 . . 3 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (ran 𝐹 ∖ {0})) → (𝑥 · (vol‘(𝐹 “ {𝑥}))) ∈ ℂ)
15 i1ff 23663 . . . . . . . . . 10 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
1615ad2antrr 705 . . . . . . . . 9 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → 𝐹:ℝ⟶ℝ)
17 ffn 6185 . . . . . . . . . 10 (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ)
18 dffn3 6194 . . . . . . . . . 10 (𝐹 Fn ℝ ↔ 𝐹:ℝ⟶ran 𝐹)
1917, 18sylib 208 . . . . . . . . 9 (𝐹:ℝ⟶ℝ → 𝐹:ℝ⟶ran 𝐹)
2016, 19syl 17 . . . . . . . 8 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → 𝐹:ℝ⟶ran 𝐹)
21 eldifn 3884 . . . . . . . . . . 11 (𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0})) → ¬ 𝑥 ∈ (ran 𝐹 ∖ {0}))
2221adantl 467 . . . . . . . . . 10 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → ¬ 𝑥 ∈ (ran 𝐹 ∖ {0}))
23 simplr3 1264 . . . . . . . . . . . . . . 15 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → 𝐴 ⊆ (ℝ ∖ {0}))
2423ssdifssd 3899 . . . . . . . . . . . . . 14 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (𝐴 ∖ (ran 𝐹 ∖ {0})) ⊆ (ℝ ∖ {0}))
25 simpr 471 . . . . . . . . . . . . . 14 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0})))
2624, 25sseldd 3753 . . . . . . . . . . . . 13 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → 𝑥 ∈ (ℝ ∖ {0}))
27 eldifn 3884 . . . . . . . . . . . . 13 (𝑥 ∈ (ℝ ∖ {0}) → ¬ 𝑥 ∈ {0})
2826, 27syl 17 . . . . . . . . . . . 12 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → ¬ 𝑥 ∈ {0})
2928biantrud 521 . . . . . . . . . . 11 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (𝑥 ∈ ran 𝐹 ↔ (𝑥 ∈ ran 𝐹 ∧ ¬ 𝑥 ∈ {0})))
30 eldif 3733 . . . . . . . . . . 11 (𝑥 ∈ (ran 𝐹 ∖ {0}) ↔ (𝑥 ∈ ran 𝐹 ∧ ¬ 𝑥 ∈ {0}))
3129, 30syl6rbbr 279 . . . . . . . . . 10 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (𝑥 ∈ (ran 𝐹 ∖ {0}) ↔ 𝑥 ∈ ran 𝐹))
3222, 31mtbid 313 . . . . . . . . 9 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → ¬ 𝑥 ∈ ran 𝐹)
33 disjsn 4383 . . . . . . . . 9 ((ran 𝐹 ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ ran 𝐹)
3432, 33sylibr 224 . . . . . . . 8 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (ran 𝐹 ∩ {𝑥}) = ∅)
35 fimacnvdisj 6223 . . . . . . . 8 ((𝐹:ℝ⟶ran 𝐹 ∧ (ran 𝐹 ∩ {𝑥}) = ∅) → (𝐹 “ {𝑥}) = ∅)
3620, 34, 35syl2anc 573 . . . . . . 7 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (𝐹 “ {𝑥}) = ∅)
3736fveq2d 6336 . . . . . 6 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (vol‘(𝐹 “ {𝑥})) = (vol‘∅))
38 0mbl 23527 . . . . . . . 8 ∅ ∈ dom vol
39 mblvol 23518 . . . . . . . 8 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
4038, 39ax-mp 5 . . . . . . 7 (vol‘∅) = (vol*‘∅)
41 ovol0 23481 . . . . . . 7 (vol*‘∅) = 0
4240, 41eqtri 2793 . . . . . 6 (vol‘∅) = 0
4337, 42syl6eq 2821 . . . . 5 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (vol‘(𝐹 “ {𝑥})) = 0)
4443oveq2d 6809 . . . 4 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (𝑥 · (vol‘(𝐹 “ {𝑥}))) = (𝑥 · 0))
45 eldifi 3883 . . . . . . 7 (𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0})) → 𝑥𝐴)
4645, 8sylan2 580 . . . . . 6 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → 𝑥 ∈ ℝ)
4746recnd 10270 . . . . 5 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → 𝑥 ∈ ℂ)
4847mul01d 10437 . . . 4 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (𝑥 · 0) = 0)
4944, 48eqtrd 2805 . . 3 (((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) ∧ 𝑥 ∈ (𝐴 ∖ (ran 𝐹 ∖ {0}))) → (𝑥 · (vol‘(𝐹 “ {𝑥}))) = 0)
50 simpr1 1233 . . 3 ((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) → 𝐴 ∈ Fin)
513, 14, 49, 50fsumss 14664 . 2 ((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) → Σ𝑥 ∈ (ran 𝐹 ∖ {0})(𝑥 · (vol‘(𝐹 “ {𝑥}))) = Σ𝑥𝐴 (𝑥 · (vol‘(𝐹 “ {𝑥}))))
522, 51eqtrd 2805 1 ((𝐹 ∈ dom ∫1 ∧ (𝐴 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ 𝐴𝐴 ⊆ (ℝ ∖ {0}))) → (∫1𝐹) = Σ𝑥𝐴 (𝑥 · (vol‘(𝐹 “ {𝑥}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  cdif 3720  cin 3722  wss 3723  c0 4063  {csn 4316  ccnv 5248  dom cdm 5249  ran crn 5250  cima 5252   Fn wfn 6026  wf 6027  cfv 6031  (class class class)co 6793  Fincfn 8109  cc 10136  cr 10137  0cc0 10138   · cmul 10143  Σcsu 14624  vol*covol 23450  volcvol 23451  1citg1 23603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-q 11992  df-rp 12036  df-xadd 12152  df-ioo 12384  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-sum 14625  df-xmet 19954  df-met 19955  df-ovol 23452  df-vol 23453  df-mbf 23607  df-itg1 23608
This theorem is referenced by:  itg1addlem4  23686  itg1climres  23701
  Copyright terms: Public domain W3C validator