Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1lea Structured version   Visualization version   GIF version

Theorem itg1lea 23524
 Description: Approximate version of itg1le 23525. If 𝐹 ≤ 𝐺 for almost all 𝑥, then ∫1𝐹 ≤ ∫1𝐺. (Contributed by Mario Carneiro, 28-Jun-2014.) (Revised by Mario Carneiro, 6-Aug-2014.)
Hypotheses
Ref Expression
itg10a.1 (𝜑𝐹 ∈ dom ∫1)
itg10a.2 (𝜑𝐴 ⊆ ℝ)
itg10a.3 (𝜑 → (vol*‘𝐴) = 0)
itg1lea.4 (𝜑𝐺 ∈ dom ∫1)
itg1lea.5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) ≤ (𝐺𝑥))
Assertion
Ref Expression
itg1lea (𝜑 → (∫1𝐹) ≤ (∫1𝐺))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥

Proof of Theorem itg1lea
StepHypRef Expression
1 itg1lea.4 . . . . 5 (𝜑𝐺 ∈ dom ∫1)
2 itg10a.1 . . . . 5 (𝜑𝐹 ∈ dom ∫1)
3 i1fsub 23520 . . . . 5 ((𝐺 ∈ dom ∫1𝐹 ∈ dom ∫1) → (𝐺𝑓𝐹) ∈ dom ∫1)
41, 2, 3syl2anc 694 . . . 4 (𝜑 → (𝐺𝑓𝐹) ∈ dom ∫1)
5 itg10a.2 . . . 4 (𝜑𝐴 ⊆ ℝ)
6 itg10a.3 . . . 4 (𝜑 → (vol*‘𝐴) = 0)
7 itg1lea.5 . . . . . 6 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) ≤ (𝐺𝑥))
8 eldifi 3765 . . . . . . 7 (𝑥 ∈ (ℝ ∖ 𝐴) → 𝑥 ∈ ℝ)
9 i1ff 23488 . . . . . . . . . 10 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
101, 9syl 17 . . . . . . . . 9 (𝜑𝐺:ℝ⟶ℝ)
1110ffvelrnda 6399 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐺𝑥) ∈ ℝ)
12 i1ff 23488 . . . . . . . . . 10 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
132, 12syl 17 . . . . . . . . 9 (𝜑𝐹:ℝ⟶ℝ)
1413ffvelrnda 6399 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
1511, 14subge0d 10655 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (0 ≤ ((𝐺𝑥) − (𝐹𝑥)) ↔ (𝐹𝑥) ≤ (𝐺𝑥)))
168, 15sylan2 490 . . . . . 6 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (0 ≤ ((𝐺𝑥) − (𝐹𝑥)) ↔ (𝐹𝑥) ≤ (𝐺𝑥)))
177, 16mpbird 247 . . . . 5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → 0 ≤ ((𝐺𝑥) − (𝐹𝑥)))
18 ffn 6083 . . . . . . . 8 (𝐺:ℝ⟶ℝ → 𝐺 Fn ℝ)
1910, 18syl 17 . . . . . . 7 (𝜑𝐺 Fn ℝ)
20 ffn 6083 . . . . . . . 8 (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ)
2113, 20syl 17 . . . . . . 7 (𝜑𝐹 Fn ℝ)
22 reex 10065 . . . . . . . 8 ℝ ∈ V
2322a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ V)
24 inidm 3855 . . . . . . 7 (ℝ ∩ ℝ) = ℝ
25 eqidd 2652 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝐺𝑥) = (𝐺𝑥))
26 eqidd 2652 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (𝐹𝑥) = (𝐹𝑥))
2719, 21, 23, 23, 24, 25, 26ofval 6948 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((𝐺𝑓𝐹)‘𝑥) = ((𝐺𝑥) − (𝐹𝑥)))
288, 27sylan2 490 . . . . 5 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → ((𝐺𝑓𝐹)‘𝑥) = ((𝐺𝑥) − (𝐹𝑥)))
2917, 28breqtrrd 4713 . . . 4 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → 0 ≤ ((𝐺𝑓𝐹)‘𝑥))
304, 5, 6, 29itg1ge0a 23523 . . 3 (𝜑 → 0 ≤ (∫1‘(𝐺𝑓𝐹)))
31 itg1sub 23521 . . . 4 ((𝐺 ∈ dom ∫1𝐹 ∈ dom ∫1) → (∫1‘(𝐺𝑓𝐹)) = ((∫1𝐺) − (∫1𝐹)))
321, 2, 31syl2anc 694 . . 3 (𝜑 → (∫1‘(𝐺𝑓𝐹)) = ((∫1𝐺) − (∫1𝐹)))
3330, 32breqtrd 4711 . 2 (𝜑 → 0 ≤ ((∫1𝐺) − (∫1𝐹)))
34 itg1cl 23497 . . . 4 (𝐺 ∈ dom ∫1 → (∫1𝐺) ∈ ℝ)
351, 34syl 17 . . 3 (𝜑 → (∫1𝐺) ∈ ℝ)
36 itg1cl 23497 . . . 4 (𝐹 ∈ dom ∫1 → (∫1𝐹) ∈ ℝ)
372, 36syl 17 . . 3 (𝜑 → (∫1𝐹) ∈ ℝ)
3835, 37subge0d 10655 . 2 (𝜑 → (0 ≤ ((∫1𝐺) − (∫1𝐹)) ↔ (∫1𝐹) ≤ (∫1𝐺)))
3933, 38mpbid 222 1 (𝜑 → (∫1𝐹) ≤ (∫1𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030  Vcvv 3231   ∖ cdif 3604   ⊆ wss 3607   class class class wbr 4685  dom cdm 5143   Fn wfn 5921  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690   ∘𝑓 cof 6937  ℝcr 9973  0cc0 9974   ≤ cle 10113   − cmin 10304  vol*covol 23277  ∫1citg1 23429 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-xadd 11985  df-ioo 12217  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-xmet 19787  df-met 19788  df-ovol 23279  df-vol 23280  df-mbf 23433  df-itg1 23434 This theorem is referenced by:  itg1le  23525  itg2uba  23555  itg2splitlem  23560
 Copyright terms: Public domain W3C validator