MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg10a Structured version   Visualization version   GIF version

Theorem itg10a 23697
Description: The integral of a simple function supported on a nullset is zero. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itg10a.1 (𝜑𝐹 ∈ dom ∫1)
itg10a.2 (𝜑𝐴 ⊆ ℝ)
itg10a.3 (𝜑 → (vol*‘𝐴) = 0)
itg10a.4 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) = 0)
Assertion
Ref Expression
itg10a (𝜑 → (∫1𝐹) = 0)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝜑,𝑥

Proof of Theorem itg10a
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 itg10a.1 . . 3 (𝜑𝐹 ∈ dom ∫1)
2 itg1val 23670 . . 3 (𝐹 ∈ dom ∫1 → (∫1𝐹) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))))
31, 2syl 17 . 2 (𝜑 → (∫1𝐹) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))))
4 i1ff 23663 . . . . . . . . . . . . . . . 16 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
51, 4syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℝ⟶ℝ)
6 ffn 6185 . . . . . . . . . . . . . . 15 (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ)
75, 6syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn ℝ)
87adantr 466 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝐹 Fn ℝ)
9 fniniseg 6481 . . . . . . . . . . . . 13 (𝐹 Fn ℝ → (𝑥 ∈ (𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)))
108, 9syl 17 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑥 ∈ (𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)))
11 eldifsni 4457 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ran 𝐹 ∖ {0}) → 𝑘 ≠ 0)
1211ad2antlr 706 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → 𝑘 ≠ 0)
13 simprl 754 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → 𝑥 ∈ ℝ)
14 eldif 3733 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (ℝ ∖ 𝐴) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥𝐴))
15 simplrr 763 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) = 𝑘)
16 simpll 750 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → 𝜑)
17 itg10a.4 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) = 0)
1816, 17sylan 569 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → (𝐹𝑥) = 0)
1915, 18eqtr3d 2807 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) ∧ 𝑥 ∈ (ℝ ∖ 𝐴)) → 𝑘 = 0)
2019ex 397 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (𝑥 ∈ (ℝ ∖ 𝐴) → 𝑘 = 0))
2114, 20syl5bir 233 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → ((𝑥 ∈ ℝ ∧ ¬ 𝑥𝐴) → 𝑘 = 0))
2213, 21mpand 675 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (¬ 𝑥𝐴𝑘 = 0))
2322necon1ad 2960 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (𝑘 ≠ 0 → 𝑥𝐴))
2412, 23mpd 15 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → 𝑥𝐴)
2524ex 397 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → ((𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘) → 𝑥𝐴))
2610, 25sylbid 230 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑥 ∈ (𝐹 “ {𝑘}) → 𝑥𝐴))
2726ssrdv 3758 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑘}) ⊆ 𝐴)
28 itg10a.2 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℝ)
2928adantr 466 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝐴 ⊆ ℝ)
3027, 29sstrd 3762 . . . . . . . . 9 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑘}) ⊆ ℝ)
31 itg10a.3 . . . . . . . . . . 11 (𝜑 → (vol*‘𝐴) = 0)
3231adantr 466 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol*‘𝐴) = 0)
33 ovolssnul 23475 . . . . . . . . . 10 (((𝐹 “ {𝑘}) ⊆ 𝐴𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → (vol*‘(𝐹 “ {𝑘})) = 0)
3427, 29, 32, 33syl3anc 1476 . . . . . . . . 9 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol*‘(𝐹 “ {𝑘})) = 0)
35 nulmbl 23523 . . . . . . . . 9 (((𝐹 “ {𝑘}) ⊆ ℝ ∧ (vol*‘(𝐹 “ {𝑘})) = 0) → (𝐹 “ {𝑘}) ∈ dom vol)
3630, 34, 35syl2anc 573 . . . . . . . 8 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝐹 “ {𝑘}) ∈ dom vol)
37 mblvol 23518 . . . . . . . 8 ((𝐹 “ {𝑘}) ∈ dom vol → (vol‘(𝐹 “ {𝑘})) = (vol*‘(𝐹 “ {𝑘})))
3836, 37syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑘})) = (vol*‘(𝐹 “ {𝑘})))
3938, 34eqtrd 2805 . . . . . 6 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑘})) = 0)
4039oveq2d 6809 . . . . 5 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑘 · (vol‘(𝐹 “ {𝑘}))) = (𝑘 · 0))
41 frn 6193 . . . . . . . . . 10 (𝐹:ℝ⟶ℝ → ran 𝐹 ⊆ ℝ)
425, 41syl 17 . . . . . . . . 9 (𝜑 → ran 𝐹 ⊆ ℝ)
4342ssdifssd 3899 . . . . . . . 8 (𝜑 → (ran 𝐹 ∖ {0}) ⊆ ℝ)
4443sselda 3752 . . . . . . 7 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ∈ ℝ)
4544recnd 10270 . . . . . 6 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ∈ ℂ)
4645mul01d 10437 . . . . 5 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑘 · 0) = 0)
4740, 46eqtrd 2805 . . . 4 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑘 · (vol‘(𝐹 “ {𝑘}))) = 0)
4847sumeq2dv 14641 . . 3 (𝜑 → Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})0)
49 i1frn 23664 . . . . . . 7 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
501, 49syl 17 . . . . . 6 (𝜑 → ran 𝐹 ∈ Fin)
51 difss 3888 . . . . . 6 (ran 𝐹 ∖ {0}) ⊆ ran 𝐹
52 ssfi 8336 . . . . . 6 ((ran 𝐹 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ ran 𝐹) → (ran 𝐹 ∖ {0}) ∈ Fin)
5350, 51, 52sylancl 574 . . . . 5 (𝜑 → (ran 𝐹 ∖ {0}) ∈ Fin)
5453olcd 863 . . . 4 (𝜑 → ((ran 𝐹 ∖ {0}) ⊆ (ℤ‘0) ∨ (ran 𝐹 ∖ {0}) ∈ Fin))
55 sumz 14661 . . . 4 (((ran 𝐹 ∖ {0}) ⊆ (ℤ‘0) ∨ (ran 𝐹 ∖ {0}) ∈ Fin) → Σ𝑘 ∈ (ran 𝐹 ∖ {0})0 = 0)
5654, 55syl 17 . . 3 (𝜑 → Σ𝑘 ∈ (ran 𝐹 ∖ {0})0 = 0)
5748, 56eqtrd 2805 . 2 (𝜑 → Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))) = 0)
583, 57eqtrd 2805 1 (𝜑 → (∫1𝐹) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 836   = wceq 1631  wcel 2145  wne 2943  cdif 3720  wss 3723  {csn 4316  ccnv 5248  dom cdm 5249  ran crn 5250  cima 5252   Fn wfn 6026  wf 6027  cfv 6031  (class class class)co 6793  Fincfn 8109  cr 10137  0cc0 10138   · cmul 10143  cuz 11888  Σcsu 14624  vol*covol 23450  volcvol 23451  1citg1 23603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-q 11992  df-rp 12036  df-ioo 12384  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-sum 14625  df-ovol 23452  df-vol 23453  df-itg1 23608
This theorem is referenced by:  itg2addnclem  33793
  Copyright terms: Public domain W3C validator