![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iszeroi | Structured version Visualization version GIF version |
Description: Implication of a class being a zero object. (Contributed by AV, 18-Apr-2020.) |
Ref | Expression |
---|---|
iszeroi | ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (ZeroO‘𝐶)) → (𝑂 ∈ (Base‘𝐶) ∧ (𝑂 ∈ (InitO‘𝐶) ∧ 𝑂 ∈ (TermO‘𝐶)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . . 6 ⊢ (𝐶 ∈ Cat → 𝐶 ∈ Cat) | |
2 | eqid 2771 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
3 | eqid 2771 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
4 | 1, 2, 3 | zerooval 16856 | . . . . 5 ⊢ (𝐶 ∈ Cat → (ZeroO‘𝐶) = ((InitO‘𝐶) ∩ (TermO‘𝐶))) |
5 | 4 | eleq2d 2836 | . . . 4 ⊢ (𝐶 ∈ Cat → (𝑂 ∈ (ZeroO‘𝐶) ↔ 𝑂 ∈ ((InitO‘𝐶) ∩ (TermO‘𝐶)))) |
6 | elin 3947 | . . . . 5 ⊢ (𝑂 ∈ ((InitO‘𝐶) ∩ (TermO‘𝐶)) ↔ (𝑂 ∈ (InitO‘𝐶) ∧ 𝑂 ∈ (TermO‘𝐶))) | |
7 | initoo 16864 | . . . . . 6 ⊢ (𝐶 ∈ Cat → (𝑂 ∈ (InitO‘𝐶) → 𝑂 ∈ (Base‘𝐶))) | |
8 | 7 | adantrd 479 | . . . . 5 ⊢ (𝐶 ∈ Cat → ((𝑂 ∈ (InitO‘𝐶) ∧ 𝑂 ∈ (TermO‘𝐶)) → 𝑂 ∈ (Base‘𝐶))) |
9 | 6, 8 | syl5bi 232 | . . . 4 ⊢ (𝐶 ∈ Cat → (𝑂 ∈ ((InitO‘𝐶) ∩ (TermO‘𝐶)) → 𝑂 ∈ (Base‘𝐶))) |
10 | 5, 9 | sylbid 230 | . . 3 ⊢ (𝐶 ∈ Cat → (𝑂 ∈ (ZeroO‘𝐶) → 𝑂 ∈ (Base‘𝐶))) |
11 | 10 | imp 393 | . 2 ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (ZeroO‘𝐶)) → 𝑂 ∈ (Base‘𝐶)) |
12 | simpl 468 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat) | |
13 | simpr 471 | . . . . 5 ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → 𝑂 ∈ (Base‘𝐶)) | |
14 | 2, 3, 12, 13 | iszeroo 16859 | . . . 4 ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → (𝑂 ∈ (ZeroO‘𝐶) ↔ (𝑂 ∈ (InitO‘𝐶) ∧ 𝑂 ∈ (TermO‘𝐶)))) |
15 | 14 | biimpd 219 | . . 3 ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → (𝑂 ∈ (ZeroO‘𝐶) → (𝑂 ∈ (InitO‘𝐶) ∧ 𝑂 ∈ (TermO‘𝐶)))) |
16 | 15 | impancom 439 | . 2 ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (ZeroO‘𝐶)) → (𝑂 ∈ (Base‘𝐶) → (𝑂 ∈ (InitO‘𝐶) ∧ 𝑂 ∈ (TermO‘𝐶)))) |
17 | 11, 16 | jcai 506 | 1 ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (ZeroO‘𝐶)) → (𝑂 ∈ (Base‘𝐶) ∧ (𝑂 ∈ (InitO‘𝐶) ∧ 𝑂 ∈ (TermO‘𝐶)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∈ wcel 2145 ∩ cin 3722 ‘cfv 6030 Basecbs 16064 Hom chom 16160 Catccat 16532 InitOcinito 16845 TermOctermo 16846 ZeroOczeroo 16847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pr 5035 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-iota 5993 df-fun 6032 df-fv 6038 df-ov 6799 df-inito 16848 df-zeroo 16850 |
This theorem is referenced by: nzerooringczr 42597 |
Copyright terms: Public domain | W3C validator |