Proof of Theorem isxmet2d
Step | Hyp | Ref
| Expression |
1 | | isxmetd.0 |
. 2
⊢ (𝜑 → 𝑋 ∈ V) |
2 | | isxmetd.1 |
. 2
⊢ (𝜑 → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
3 | 2 | fovrnda 6970 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐷𝑦) ∈
ℝ*) |
4 | | 0xr 10278 |
. . . 4
⊢ 0 ∈
ℝ* |
5 | | xrletri3 12178 |
. . . 4
⊢ (((𝑥𝐷𝑦) ∈ ℝ* ∧ 0 ∈
ℝ*) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦)))) |
6 | 3, 4, 5 | sylancl 697 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦)))) |
7 | | isxmet2d.2 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 0 ≤ (𝑥𝐷𝑦)) |
8 | 7 | biantrud 529 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥𝐷𝑦) ≤ 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦)))) |
9 | | isxmet2d.3 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥𝐷𝑦) ≤ 0 ↔ 𝑥 = 𝑦)) |
10 | 6, 8, 9 | 3bitr2d 296 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦)) |
11 | | isxmet2d.4 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) |
12 | 11 | 3expa 1112 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) |
13 | | rexadd 12256 |
. . . . . . 7
⊢ (((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) |
14 | 13 | adantl 473 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷𝑥) + (𝑧𝐷𝑦))) |
15 | 12, 14 | breqtrrd 4832 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
16 | 15 | anassrs 683 |
. . . 4
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) ∧ (𝑧𝐷𝑦) ∈ ℝ) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
17 | 3 | 3adantr3 1177 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝐷𝑦) ∈
ℝ*) |
18 | | pnfge 12157 |
. . . . . . 7
⊢ ((𝑥𝐷𝑦) ∈ ℝ* → (𝑥𝐷𝑦) ≤ +∞) |
19 | 17, 18 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝐷𝑦) ≤ +∞) |
20 | 19 | ad2antrr 764 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) ∧ (𝑧𝐷𝑦) = +∞) → (𝑥𝐷𝑦) ≤ +∞) |
21 | | oveq2 6821 |
. . . . . 6
⊢ ((𝑧𝐷𝑦) = +∞ → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = ((𝑧𝐷𝑥) +𝑒
+∞)) |
22 | | ffn 6206 |
. . . . . . . . . . . 12
⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → 𝐷 Fn (𝑋 × 𝑋)) |
23 | 2, 22 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐷 Fn (𝑋 × 𝑋)) |
24 | | elxrge0 12474 |
. . . . . . . . . . . . 13
⊢ ((𝑥𝐷𝑦) ∈ (0[,]+∞) ↔ ((𝑥𝐷𝑦) ∈ ℝ* ∧ 0 ≤
(𝑥𝐷𝑦))) |
25 | 3, 7, 24 | sylanbrc 701 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐷𝑦) ∈ (0[,]+∞)) |
26 | 25 | ralrimivva 3109 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐷𝑦) ∈ (0[,]+∞)) |
27 | | ffnov 6929 |
. . . . . . . . . . 11
⊢ (𝐷:(𝑋 × 𝑋)⟶(0[,]+∞) ↔ (𝐷 Fn (𝑋 × 𝑋) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝐷𝑦) ∈ (0[,]+∞))) |
28 | 23, 26, 27 | sylanbrc 701 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞)) |
29 | 28 | adantr 472 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝐷:(𝑋 × 𝑋)⟶(0[,]+∞)) |
30 | | simpr3 1238 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑧 ∈ 𝑋) |
31 | | simpr1 1234 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑥 ∈ 𝑋) |
32 | 29, 30, 31 | fovrnd 6971 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑧𝐷𝑥) ∈ (0[,]+∞)) |
33 | | elxrge0 12474 |
. . . . . . . . 9
⊢ ((𝑧𝐷𝑥) ∈ (0[,]+∞) ↔ ((𝑧𝐷𝑥) ∈ ℝ* ∧ 0 ≤
(𝑧𝐷𝑥))) |
34 | 33 | simplbi 478 |
. . . . . . . 8
⊢ ((𝑧𝐷𝑥) ∈ (0[,]+∞) → (𝑧𝐷𝑥) ∈
ℝ*) |
35 | 32, 34 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑧𝐷𝑥) ∈
ℝ*) |
36 | | renemnf 10280 |
. . . . . . 7
⊢ ((𝑧𝐷𝑥) ∈ ℝ → (𝑧𝐷𝑥) ≠ -∞) |
37 | | xaddpnf1 12250 |
. . . . . . 7
⊢ (((𝑧𝐷𝑥) ∈ ℝ* ∧ (𝑧𝐷𝑥) ≠ -∞) → ((𝑧𝐷𝑥) +𝑒 +∞) =
+∞) |
38 | 35, 36, 37 | syl2an 495 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) → ((𝑧𝐷𝑥) +𝑒 +∞) =
+∞) |
39 | 21, 38 | sylan9eqr 2816 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) ∧ (𝑧𝐷𝑦) = +∞) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = +∞) |
40 | 20, 39 | breqtrrd 4832 |
. . . 4
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) ∧ (𝑧𝐷𝑦) = +∞) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
41 | | simpr2 1236 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑦 ∈ 𝑋) |
42 | 29, 30, 41 | fovrnd 6971 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑧𝐷𝑦) ∈ (0[,]+∞)) |
43 | | elxrge0 12474 |
. . . . . . . . . . 11
⊢ ((𝑧𝐷𝑦) ∈ (0[,]+∞) ↔ ((𝑧𝐷𝑦) ∈ ℝ* ∧ 0 ≤
(𝑧𝐷𝑦))) |
44 | 43 | simplbi 478 |
. . . . . . . . . 10
⊢ ((𝑧𝐷𝑦) ∈ (0[,]+∞) → (𝑧𝐷𝑦) ∈
ℝ*) |
45 | 42, 44 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑧𝐷𝑦) ∈
ℝ*) |
46 | 43 | simprbi 483 |
. . . . . . . . . 10
⊢ ((𝑧𝐷𝑦) ∈ (0[,]+∞) → 0 ≤ (𝑧𝐷𝑦)) |
47 | 42, 46 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 0 ≤ (𝑧𝐷𝑦)) |
48 | | ge0nemnf 12197 |
. . . . . . . . 9
⊢ (((𝑧𝐷𝑦) ∈ ℝ* ∧ 0 ≤
(𝑧𝐷𝑦)) → (𝑧𝐷𝑦) ≠ -∞) |
49 | 45, 47, 48 | syl2anc 696 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑧𝐷𝑦) ≠ -∞) |
50 | 49 | a1d 25 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (¬ (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) → (𝑧𝐷𝑦) ≠ -∞)) |
51 | 50 | necon4bd 2952 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑧𝐷𝑦) = -∞ → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) |
52 | 51 | adantr 472 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) → ((𝑧𝐷𝑦) = -∞ → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) |
53 | 52 | imp 444 |
. . . 4
⊢ ((((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) ∧ (𝑧𝐷𝑦) = -∞) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
54 | 45 | adantr 472 |
. . . . 5
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) → (𝑧𝐷𝑦) ∈
ℝ*) |
55 | | elxr 12143 |
. . . . 5
⊢ ((𝑧𝐷𝑦) ∈ ℝ* ↔ ((𝑧𝐷𝑦) ∈ ℝ ∨ (𝑧𝐷𝑦) = +∞ ∨ (𝑧𝐷𝑦) = -∞)) |
56 | 54, 55 | sylib 208 |
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) → ((𝑧𝐷𝑦) ∈ ℝ ∨ (𝑧𝐷𝑦) = +∞ ∨ (𝑧𝐷𝑦) = -∞)) |
57 | 16, 40, 53, 56 | mpjao3dan 1544 |
. . 3
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) ∈ ℝ) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
58 | 19 | adantr 472 |
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) = +∞) → (𝑥𝐷𝑦) ≤ +∞) |
59 | | oveq1 6820 |
. . . . 5
⊢ ((𝑧𝐷𝑥) = +∞ → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = (+∞ +𝑒 (𝑧𝐷𝑦))) |
60 | | xaddpnf2 12251 |
. . . . . 6
⊢ (((𝑧𝐷𝑦) ∈ ℝ* ∧ (𝑧𝐷𝑦) ≠ -∞) → (+∞
+𝑒 (𝑧𝐷𝑦)) = +∞) |
61 | 45, 49, 60 | syl2anc 696 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (+∞ +𝑒
(𝑧𝐷𝑦)) = +∞) |
62 | 59, 61 | sylan9eqr 2816 |
. . . 4
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) = +∞) → ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) = +∞) |
63 | 58, 62 | breqtrrd 4832 |
. . 3
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) = +∞) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
64 | 33 | simprbi 483 |
. . . . . . . 8
⊢ ((𝑧𝐷𝑥) ∈ (0[,]+∞) → 0 ≤ (𝑧𝐷𝑥)) |
65 | 32, 64 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 0 ≤ (𝑧𝐷𝑥)) |
66 | | ge0nemnf 12197 |
. . . . . . 7
⊢ (((𝑧𝐷𝑥) ∈ ℝ* ∧ 0 ≤
(𝑧𝐷𝑥)) → (𝑧𝐷𝑥) ≠ -∞) |
67 | 35, 65, 66 | syl2anc 696 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑧𝐷𝑥) ≠ -∞) |
68 | 67 | a1d 25 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (¬ (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)) → (𝑧𝐷𝑥) ≠ -∞)) |
69 | 68 | necon4bd 2952 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑧𝐷𝑥) = -∞ → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦)))) |
70 | 69 | imp 444 |
. . 3
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) ∧ (𝑧𝐷𝑥) = -∞) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
71 | | elxr 12143 |
. . . 4
⊢ ((𝑧𝐷𝑥) ∈ ℝ* ↔ ((𝑧𝐷𝑥) ∈ ℝ ∨ (𝑧𝐷𝑥) = +∞ ∨ (𝑧𝐷𝑥) = -∞)) |
72 | 35, 71 | sylib 208 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑧𝐷𝑥) ∈ ℝ ∨ (𝑧𝐷𝑥) = +∞ ∨ (𝑧𝐷𝑥) = -∞)) |
73 | 57, 63, 70, 72 | mpjao3dan 1544 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) +𝑒 (𝑧𝐷𝑦))) |
74 | 1, 2, 10, 73 | isxmetd 22332 |
1
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |