Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iswwlksnx Structured version   Visualization version   GIF version

Theorem iswwlksnx 26943
 Description: Properties of a word to represent a walk of a fixed length, definition of WWalks expanded. (Contributed by AV, 28-Apr-2021.)
Hypotheses
Ref Expression
iswwlksnx.v 𝑉 = (Vtx‘𝐺)
iswwlksnx.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
iswwlksnx (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ (♯‘𝑊) = (𝑁 + 1))))
Distinct variable groups:   𝑖,𝐺   𝑖,𝑊
Allowed substitution hints:   𝐸(𝑖)   𝑁(𝑖)   𝑉(𝑖)

Proof of Theorem iswwlksnx
StepHypRef Expression
1 iswwlksn 26941 . 2 (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1))))
2 iswwlksnx.v . . . . . . 7 𝑉 = (Vtx‘𝐺)
3 iswwlksnx.e . . . . . . 7 𝐸 = (Edg‘𝐺)
42, 3iswwlks 26939 . . . . . 6 (𝑊 ∈ (WWalks‘𝐺) ↔ (𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
5 df-3an 1074 . . . . . . 7 ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ↔ ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
6 nn0p1gt0 11514 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1))
76gt0ne0d 10784 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑁 + 1) ≠ 0)
87adantr 472 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑁 + 1) ≠ 0)
9 neeq1 2994 . . . . . . . . . . . . 13 ((♯‘𝑊) = (𝑁 + 1) → ((♯‘𝑊) ≠ 0 ↔ (𝑁 + 1) ≠ 0))
109adantl 473 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → ((♯‘𝑊) ≠ 0 ↔ (𝑁 + 1) ≠ 0))
118, 10mpbird 247 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → (♯‘𝑊) ≠ 0)
12 hasheq0 13346 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅))
1312necon3bid 2976 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) ≠ 0 ↔ 𝑊 ≠ ∅))
1411, 13syl5ibcom 235 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑊 ∈ Word 𝑉𝑊 ≠ ∅))
1514pm4.71rd 670 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑊 ∈ Word 𝑉 ↔ (𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉)))
1615bicomd 213 . . . . . . . 8 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) ↔ 𝑊 ∈ Word 𝑉))
1716anbi1d 743 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → (((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
185, 17syl5bb 272 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → ((𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
194, 18syl5bb 272 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) = (𝑁 + 1)) → (𝑊 ∈ (WWalks‘𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸)))
2019ex 449 . . . 4 (𝑁 ∈ ℕ0 → ((♯‘𝑊) = (𝑁 + 1) → (𝑊 ∈ (WWalks‘𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))))
2120pm5.32rd 675 . . 3 (𝑁 ∈ ℕ0 → ((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 + 1))))
22 df-3an 1074 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ (♯‘𝑊) = (𝑁 + 1)) ↔ ((𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) ∧ (♯‘𝑊) = (𝑁 + 1)))
2321, 22syl6bbr 278 . 2 (𝑁 ∈ ℕ0 → ((𝑊 ∈ (WWalks‘𝐺) ∧ (♯‘𝑊) = (𝑁 + 1)) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ (♯‘𝑊) = (𝑁 + 1))))
241, 23bitrd 268 1 (𝑁 ∈ ℕ0 → (𝑊 ∈ (𝑁 WWalksN 𝐺) ↔ (𝑊 ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸 ∧ (♯‘𝑊) = (𝑁 + 1))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ≠ wne 2932  ∀wral 3050  ∅c0 4058  {cpr 4323  ‘cfv 6049  (class class class)co 6813  0cc0 10128  1c1 10129   + caddc 10131   − cmin 10458  ℕ0cn0 11484  ..^cfzo 12659  ♯chash 13311  Word cword 13477  Vtxcvtx 26073  Edgcedg 26138  WWalkscwwlks 26928   WWalksN cwwlksn 26929 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-er 7911  df-map 8025  df-pm 8026  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-fzo 12660  df-hash 13312  df-word 13485  df-wwlks 26933  df-wwlksn 26934 This theorem is referenced by:  clwwlknwwlksn  27166  clwwlknwwlksnOLD  27167  wwlksubclwwlk  27189
 Copyright terms: Public domain W3C validator