![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isvcOLD | Structured version Visualization version GIF version |
Description: The predicate "is a complex vector space." (Contributed by NM, 31-May-2008.) Obsolete as of 4-Oct-2021. Use iscvsp 23148 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
isvcOLD.1 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
isvcOLD | ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vcex 27763 | . 2 ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD → (𝐺 ∈ V ∧ 𝑆 ∈ V)) | |
2 | elex 3352 | . . . . 5 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ V) | |
3 | 2 | adantr 472 | . . . 4 ⊢ ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋) → 𝐺 ∈ V) |
4 | cnex 10229 | . . . . . . 7 ⊢ ℂ ∈ V | |
5 | ablogrpo 27731 | . . . . . . . 8 ⊢ (𝐺 ∈ AbelOp → 𝐺 ∈ GrpOp) | |
6 | isvcOLD.1 | . . . . . . . . 9 ⊢ 𝑋 = ran 𝐺 | |
7 | rnexg 7264 | . . . . . . . . 9 ⊢ (𝐺 ∈ GrpOp → ran 𝐺 ∈ V) | |
8 | 6, 7 | syl5eqel 2843 | . . . . . . . 8 ⊢ (𝐺 ∈ GrpOp → 𝑋 ∈ V) |
9 | 5, 8 | syl 17 | . . . . . . 7 ⊢ (𝐺 ∈ AbelOp → 𝑋 ∈ V) |
10 | xpexg 7126 | . . . . . . 7 ⊢ ((ℂ ∈ V ∧ 𝑋 ∈ V) → (ℂ × 𝑋) ∈ V) | |
11 | 4, 9, 10 | sylancr 698 | . . . . . 6 ⊢ (𝐺 ∈ AbelOp → (ℂ × 𝑋) ∈ V) |
12 | fex 6654 | . . . . . 6 ⊢ ((𝑆:(ℂ × 𝑋)⟶𝑋 ∧ (ℂ × 𝑋) ∈ V) → 𝑆 ∈ V) | |
13 | 11, 12 | sylan2 492 | . . . . 5 ⊢ ((𝑆:(ℂ × 𝑋)⟶𝑋 ∧ 𝐺 ∈ AbelOp) → 𝑆 ∈ V) |
14 | 13 | ancoms 468 | . . . 4 ⊢ ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋) → 𝑆 ∈ V) |
15 | 3, 14 | jca 555 | . . 3 ⊢ ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋) → (𝐺 ∈ V ∧ 𝑆 ∈ V)) |
16 | 15 | 3adant3 1127 | . 2 ⊢ ((𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))) → (𝐺 ∈ V ∧ 𝑆 ∈ V)) |
17 | 6 | isvclem 27762 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑆 ∈ V) → (〈𝐺, 𝑆〉 ∈ CVecOLD ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥)))))))) |
18 | 1, 16, 17 | pm5.21nii 367 | 1 ⊢ (〈𝐺, 𝑆〉 ∈ CVecOLD ↔ (𝐺 ∈ AbelOp ∧ 𝑆:(ℂ × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ((1𝑆𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ 𝑋 (𝑦𝑆(𝑥𝐺𝑧)) = ((𝑦𝑆𝑥)𝐺(𝑦𝑆𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑆𝑥) = ((𝑦𝑆𝑥)𝐺(𝑧𝑆𝑥)) ∧ ((𝑦 · 𝑧)𝑆𝑥) = (𝑦𝑆(𝑧𝑆𝑥))))))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∀wral 3050 Vcvv 3340 〈cop 4327 × cxp 5264 ran crn 5267 ⟶wf 6045 (class class class)co 6814 ℂcc 10146 1c1 10149 + caddc 10151 · cmul 10153 GrpOpcgr 27673 AbelOpcablo 27728 CVecOLDcvc 27743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6817 df-ablo 27729 df-vc 27744 |
This theorem is referenced by: isvciOLD 27765 |
Copyright terms: Public domain | W3C validator |