Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isupwlk Structured version   Visualization version   GIF version

Theorem isupwlk 41488
Description: Properties of a pair of functions to be a simple walk. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 28-Dec-2020.)
Hypotheses
Ref Expression
upwlksfval.v 𝑉 = (Vtx‘𝐺)
upwlksfval.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
isupwlk ((𝐺𝑊𝐹𝑈𝑃𝑍) → (𝐹(UPWalks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
Distinct variable groups:   𝑘,𝐺   𝑘,𝐹   𝑃,𝑘
Allowed substitution hints:   𝑈(𝑘)   𝐼(𝑘)   𝑉(𝑘)   𝑊(𝑘)   𝑍(𝑘)

Proof of Theorem isupwlk
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4652 . . 3 (𝐹(UPWalks‘𝐺)𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ (UPWalks‘𝐺))
2 upwlksfval.v . . . . . 6 𝑉 = (Vtx‘𝐺)
3 upwlksfval.i . . . . . 6 𝐼 = (iEdg‘𝐺)
42, 3upwlksfval 41487 . . . . 5 (𝐺𝑊 → (UPWalks‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
543ad2ant1 1081 . . . 4 ((𝐺𝑊𝐹𝑈𝑃𝑍) → (UPWalks‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
65eleq2d 2686 . . 3 ((𝐺𝑊𝐹𝑈𝑃𝑍) → (⟨𝐹, 𝑃⟩ ∈ (UPWalks‘𝐺) ↔ ⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})}))
71, 6syl5bb 272 . 2 ((𝐺𝑊𝐹𝑈𝑃𝑍) → (𝐹(UPWalks‘𝐺)𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})}))
8 eleq1 2688 . . . . . 6 (𝑓 = 𝐹 → (𝑓 ∈ Word dom 𝐼𝐹 ∈ Word dom 𝐼))
98adantr 481 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑓 ∈ Word dom 𝐼𝐹 ∈ Word dom 𝐼))
10 simpr 477 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → 𝑝 = 𝑃)
11 fveq2 6189 . . . . . . . 8 (𝑓 = 𝐹 → (#‘𝑓) = (#‘𝐹))
1211oveq2d 6663 . . . . . . 7 (𝑓 = 𝐹 → (0...(#‘𝑓)) = (0...(#‘𝐹)))
1312adantr 481 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (0...(#‘𝑓)) = (0...(#‘𝐹)))
1410, 13feq12d 6031 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝:(0...(#‘𝑓))⟶𝑉𝑃:(0...(#‘𝐹))⟶𝑉))
1511oveq2d 6663 . . . . . . 7 (𝑓 = 𝐹 → (0..^(#‘𝑓)) = (0..^(#‘𝐹)))
1615adantr 481 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (0..^(#‘𝑓)) = (0..^(#‘𝐹)))
17 fveq1 6188 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓𝑘) = (𝐹𝑘))
1817fveq2d 6193 . . . . . . 7 (𝑓 = 𝐹 → (𝐼‘(𝑓𝑘)) = (𝐼‘(𝐹𝑘)))
19 fveq1 6188 . . . . . . . 8 (𝑝 = 𝑃 → (𝑝𝑘) = (𝑃𝑘))
20 fveq1 6188 . . . . . . . 8 (𝑝 = 𝑃 → (𝑝‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)))
2119, 20preq12d 4274 . . . . . . 7 (𝑝 = 𝑃 → {(𝑝𝑘), (𝑝‘(𝑘 + 1))} = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
2218, 21eqeqan12d 2637 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ↔ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
2316, 22raleqbidv 3150 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → (∀𝑘 ∈ (0..^(#‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ↔ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
249, 14, 233anbi123d 1398 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑓 ∈ Word dom 𝐼𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))}) ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
2524opelopabga 4986 . . 3 ((𝐹𝑈𝑃𝑍) → (⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})} ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
26253adant1 1078 . 2 ((𝐺𝑊𝐹𝑈𝑃𝑍) → (⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))(𝐼‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})} ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
277, 26bitrd 268 1 ((𝐺𝑊𝐹𝑈𝑃𝑍) → (𝐹(UPWalks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1482  wcel 1989  wral 2911  {cpr 4177  cop 4181   class class class wbr 4651  {copab 4710  dom cdm 5112  wf 5882  cfv 5886  (class class class)co 6647  0cc0 9933  1c1 9934   + caddc 9936  ...cfz 12323  ..^cfzo 12461  #chash 13112  Word cword 13286  Vtxcvtx 25868  iEdgciedg 25869  UPWalkscupwlks 41485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-er 7739  df-map 7856  df-pm 7857  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-card 8762  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-n0 11290  df-z 11375  df-uz 11685  df-fz 12324  df-fzo 12462  df-hash 13113  df-word 13294  df-upwlks 41486
This theorem is referenced by:  isupwlkg  41489  upwlkwlk  41491  upgrwlkupwlk  41492  upgrisupwlkALT  41494
  Copyright terms: Public domain W3C validator