![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isumsup2 | Structured version Visualization version GIF version |
Description: An infinite sum of nonnegative terms is equal to the supremum of the partial sums. (Contributed by Mario Carneiro, 12-Jun-2014.) |
Ref | Expression |
---|---|
isumsup.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
isumsup.2 | ⊢ 𝐺 = seq𝑀( + , 𝐹) |
isumsup.3 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
isumsup.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
isumsup.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) |
isumsup.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐴) |
isumsup.7 | ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝐺‘𝑗) ≤ 𝑥) |
Ref | Expression |
---|---|
isumsup2 | ⊢ (𝜑 → 𝐺 ⇝ sup(ran 𝐺, ℝ, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumsup.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | isumsup.3 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | isumsup.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
4 | isumsup.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) | |
5 | 3, 4 | eqeltrd 2730 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
6 | 1, 2, 5 | serfre 12870 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ) |
7 | isumsup.2 | . . . 4 ⊢ 𝐺 = seq𝑀( + , 𝐹) | |
8 | 7 | feq1i 6074 | . . 3 ⊢ (𝐺:𝑍⟶ℝ ↔ seq𝑀( + , 𝐹):𝑍⟶ℝ) |
9 | 6, 8 | sylibr 224 | . 2 ⊢ (𝜑 → 𝐺:𝑍⟶ℝ) |
10 | simpr 476 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ 𝑍) | |
11 | 10, 1 | syl6eleq 2740 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ (ℤ≥‘𝑀)) |
12 | eluzelz 11735 | . . . . 5 ⊢ (𝑗 ∈ (ℤ≥‘𝑀) → 𝑗 ∈ ℤ) | |
13 | uzid 11740 | . . . . 5 ⊢ (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ≥‘𝑗)) | |
14 | peano2uz 11779 | . . . . 5 ⊢ (𝑗 ∈ (ℤ≥‘𝑗) → (𝑗 + 1) ∈ (ℤ≥‘𝑗)) | |
15 | 11, 12, 13, 14 | 4syl 19 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑗 + 1) ∈ (ℤ≥‘𝑗)) |
16 | simpl 472 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝜑) | |
17 | elfzuz 12376 | . . . . . 6 ⊢ (𝑘 ∈ (𝑀...(𝑗 + 1)) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
18 | 17, 1 | syl6eleqr 2741 | . . . . 5 ⊢ (𝑘 ∈ (𝑀...(𝑗 + 1)) → 𝑘 ∈ 𝑍) |
19 | 16, 18, 5 | syl2an 493 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...(𝑗 + 1))) → (𝐹‘𝑘) ∈ ℝ) |
20 | 1 | peano2uzs 11780 | . . . . . . 7 ⊢ (𝑗 ∈ 𝑍 → (𝑗 + 1) ∈ 𝑍) |
21 | 20 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝑗 + 1) ∈ 𝑍) |
22 | elfzuz 12376 | . . . . . 6 ⊢ (𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1)) → 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) | |
23 | 1 | uztrn2 11743 | . . . . . 6 ⊢ (((𝑗 + 1) ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘(𝑗 + 1))) → 𝑘 ∈ 𝑍) |
24 | 21, 22, 23 | syl2an 493 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 𝑘 ∈ 𝑍) |
25 | isumsup.6 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐴) | |
26 | 25, 3 | breqtrrd 4713 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) |
27 | 26 | adantlr 751 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) → 0 ≤ (𝐹‘𝑘)) |
28 | 24, 27 | syldan 486 | . . . 4 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ ((𝑗 + 1)...(𝑗 + 1))) → 0 ≤ (𝐹‘𝑘)) |
29 | 11, 15, 19, 28 | sermono 12873 | . . 3 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ≤ (seq𝑀( + , 𝐹)‘(𝑗 + 1))) |
30 | 7 | fveq1i 6230 | . . 3 ⊢ (𝐺‘𝑗) = (seq𝑀( + , 𝐹)‘𝑗) |
31 | 7 | fveq1i 6230 | . . 3 ⊢ (𝐺‘(𝑗 + 1)) = (seq𝑀( + , 𝐹)‘(𝑗 + 1)) |
32 | 29, 30, 31 | 3brtr4g 4719 | . 2 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (𝐺‘𝑗) ≤ (𝐺‘(𝑗 + 1))) |
33 | isumsup.7 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑗 ∈ 𝑍 (𝐺‘𝑗) ≤ 𝑥) | |
34 | 1, 2, 9, 32, 33 | climsup 14444 | 1 ⊢ (𝜑 → 𝐺 ⇝ sup(ran 𝐺, ℝ, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 ∃wrex 2942 class class class wbr 4685 ran crn 5144 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 supcsup 8387 ℝcr 9973 0cc0 9974 1c1 9975 + caddc 9977 < clt 10112 ≤ cle 10113 ℤcz 11415 ℤ≥cuz 11725 ...cfz 12364 seqcseq 12841 ⇝ cli 14259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-sup 8389 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-rp 11871 df-fz 12365 df-seq 12842 df-exp 12901 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-clim 14263 |
This theorem is referenced by: isumsup 14623 ovoliunlem1 23316 ioombl1lem4 23375 uniioombllem2 23397 uniioombllem6 23402 sge0isum 40962 |
Copyright terms: Public domain | W3C validator |