![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isumless | Structured version Visualization version GIF version |
Description: A finite sum of nonnegative numbers is less or equal to its limit. (Contributed by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
isumless.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
isumless.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
isumless.3 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
isumless.4 | ⊢ (𝜑 → 𝐴 ⊆ 𝑍) |
isumless.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) |
isumless.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) |
isumless.7 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐵) |
isumless.8 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
Ref | Expression |
---|---|
isumless | ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝑍 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumless.4 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝑍) | |
2 | 1 | sselda 3732 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝑍) |
3 | isumless.6 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℝ) | |
4 | 3 | recnd 10231 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ ℂ) |
5 | 2, 4 | syldan 488 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
6 | 5 | ralrimiva 3092 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
7 | isumless.1 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
8 | 7 | eqimssi 3788 | . . . . 5 ⊢ 𝑍 ⊆ (ℤ≥‘𝑀) |
9 | 8 | orci 404 | . . . 4 ⊢ (𝑍 ⊆ (ℤ≥‘𝑀) ∨ 𝑍 ∈ Fin) |
10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → (𝑍 ⊆ (ℤ≥‘𝑀) ∨ 𝑍 ∈ Fin)) |
11 | sumss2 14627 | . . 3 ⊢ (((𝐴 ⊆ 𝑍 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) ∧ (𝑍 ⊆ (ℤ≥‘𝑀) ∨ 𝑍 ∈ Fin)) → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝑍 if(𝑘 ∈ 𝐴, 𝐵, 0)) | |
12 | 1, 6, 10, 11 | syl21anc 1462 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑘 ∈ 𝑍 if(𝑘 ∈ 𝐴, 𝐵, 0)) |
13 | isumless.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
14 | eleq1 2815 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴)) | |
15 | fveq2 6340 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (𝐹‘𝑗) = (𝐹‘𝑘)) | |
16 | 14, 15 | ifbieq1d 4241 | . . . . . 6 ⊢ (𝑗 = 𝑘 → if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0) = if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0)) |
17 | eqid 2748 | . . . . . 6 ⊢ (𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0)) = (𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0)) | |
18 | fvex 6350 | . . . . . . 7 ⊢ (𝐹‘𝑘) ∈ V | |
19 | c0ex 10197 | . . . . . . 7 ⊢ 0 ∈ V | |
20 | 18, 19 | ifex 4288 | . . . . . 6 ⊢ if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0) ∈ V |
21 | 16, 17, 20 | fvmpt 6432 | . . . . 5 ⊢ (𝑘 ∈ 𝑍 → ((𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0))‘𝑘) = if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0)) |
22 | 21 | adantl 473 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0))‘𝑘) = if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0)) |
23 | isumless.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐵) | |
24 | 23 | ifeq1d 4236 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝐴, (𝐹‘𝑘), 0) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
25 | 22, 24 | eqtrd 2782 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0))‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 0)) |
26 | 0re 10203 | . . . 4 ⊢ 0 ∈ ℝ | |
27 | ifcl 4262 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℝ) | |
28 | 3, 26, 27 | sylancl 697 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝐴, 𝐵, 0) ∈ ℝ) |
29 | isumless.7 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 0 ≤ 𝐵) | |
30 | leid 10296 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 ≤ 𝐵) | |
31 | breq1 4795 | . . . . . 6 ⊢ (𝐵 = if(𝑘 ∈ 𝐴, 𝐵, 0) → (𝐵 ≤ 𝐵 ↔ if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵)) | |
32 | breq1 4795 | . . . . . 6 ⊢ (0 = if(𝑘 ∈ 𝐴, 𝐵, 0) → (0 ≤ 𝐵 ↔ if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵)) | |
33 | 31, 32 | ifboth 4256 | . . . . 5 ⊢ ((𝐵 ≤ 𝐵 ∧ 0 ≤ 𝐵) → if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵) |
34 | 30, 33 | sylan 489 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵) |
35 | 3, 29, 34 | syl2anc 696 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ 𝐵) |
36 | isumless.3 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
37 | 7, 13, 36, 1, 25, 5 | fsumcvg3 14630 | . . 3 ⊢ (𝜑 → seq𝑀( + , (𝑗 ∈ 𝑍 ↦ if(𝑗 ∈ 𝐴, (𝐹‘𝑗), 0))) ∈ dom ⇝ ) |
38 | isumless.8 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | |
39 | 7, 13, 25, 28, 23, 3, 35, 37, 38 | isumle 14746 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝑍 if(𝑘 ∈ 𝐴, 𝐵, 0) ≤ Σ𝑘 ∈ 𝑍 𝐵) |
40 | 12, 39 | eqbrtrd 4814 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ≤ Σ𝑘 ∈ 𝑍 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 ∧ wa 383 = wceq 1620 ∈ wcel 2127 ∀wral 3038 ⊆ wss 3703 ifcif 4218 class class class wbr 4792 ↦ cmpt 4869 dom cdm 5254 ‘cfv 6037 Fincfn 8109 ℂcc 10097 ℝcr 10098 0cc0 10099 + caddc 10102 ≤ cle 10238 ℤcz 11540 ℤ≥cuz 11850 seqcseq 12966 ⇝ cli 14385 Σcsu 14586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-inf2 8699 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 ax-pre-sup 10177 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-fal 1626 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-int 4616 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-se 5214 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-isom 6046 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-1st 7321 df-2nd 7322 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7899 df-pm 8014 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-sup 8501 df-inf 8502 df-oi 8568 df-card 8926 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-div 10848 df-nn 11184 df-2 11242 df-3 11243 df-n0 11456 df-z 11541 df-uz 11851 df-rp 11997 df-fz 12491 df-fzo 12631 df-fl 12758 df-seq 12967 df-exp 13026 df-hash 13283 df-cj 14009 df-re 14010 df-im 14011 df-sqrt 14145 df-abs 14146 df-clim 14389 df-rlim 14390 df-sum 14587 |
This theorem is referenced by: isumltss 14750 climcnds 14753 harmonic 14761 mertenslem1 14786 prmreclem5 15797 ovoliunlem1 23441 ovoliun2 23445 esumpcvgval 30420 eulerpartlems 30702 geomcau 33837 |
Copyright terms: Public domain | W3C validator |