MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isufil2 Structured version   Visualization version   GIF version

Theorem isufil2 21759
Description: The maximal property of an ultrafilter. (Contributed by Jeff Hankins, 30-Nov-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
isufil2 (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)))
Distinct variable groups:   𝑓,𝐹   𝑓,𝑋

Proof of Theorem isufil2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ufilfil 21755 . . 3 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
2 ufilmax 21758 . . . . 5 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓) → 𝐹 = 𝑓)
323expia 1286 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑓 ∈ (Fil‘𝑋)) → (𝐹𝑓𝐹 = 𝑓))
43ralrimiva 2995 . . 3 (𝐹 ∈ (UFil‘𝑋) → ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓))
51, 4jca 553 . 2 (𝐹 ∈ (UFil‘𝑋) → (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)))
6 simpl 472 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)) → 𝐹 ∈ (Fil‘𝑋))
7 selpw 4198 . . . . 5 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
8 simpll 805 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → 𝐹 ∈ (Fil‘𝑋))
9 snex 4938 . . . . . . . . . . . . . . . 16 {𝑥} ∈ V
10 unexg 7001 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ (Fil‘𝑋) ∧ {𝑥} ∈ V) → (𝐹 ∪ {𝑥}) ∈ V)
118, 9, 10sylancl 695 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (𝐹 ∪ {𝑥}) ∈ V)
12 ssfii 8366 . . . . . . . . . . . . . . 15 ((𝐹 ∪ {𝑥}) ∈ V → (𝐹 ∪ {𝑥}) ⊆ (fi‘(𝐹 ∪ {𝑥})))
1311, 12syl 17 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (𝐹 ∪ {𝑥}) ⊆ (fi‘(𝐹 ∪ {𝑥})))
14 filsspw 21702 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ⊆ 𝒫 𝑋)
1514ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → 𝐹 ⊆ 𝒫 𝑋)
167biimpri 218 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑋𝑥 ∈ 𝒫 𝑋)
1716ad2antlr 763 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → 𝑥 ∈ 𝒫 𝑋)
1817snssd 4372 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → {𝑥} ⊆ 𝒫 𝑋)
1915, 18unssd 3822 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (𝐹 ∪ {𝑥}) ⊆ 𝒫 𝑋)
20 ssun2 3810 . . . . . . . . . . . . . . . . . 18 {𝑥} ⊆ (𝐹 ∪ {𝑥})
21 vex 3234 . . . . . . . . . . . . . . . . . . 19 𝑥 ∈ V
2221snnz 4340 . . . . . . . . . . . . . . . . . 18 {𝑥} ≠ ∅
23 ssn0 4009 . . . . . . . . . . . . . . . . . 18 (({𝑥} ⊆ (𝐹 ∪ {𝑥}) ∧ {𝑥} ≠ ∅) → (𝐹 ∪ {𝑥}) ≠ ∅)
2420, 22, 23mp2an 708 . . . . . . . . . . . . . . . . 17 (𝐹 ∪ {𝑥}) ≠ ∅
2524a1i 11 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (𝐹 ∪ {𝑥}) ≠ ∅)
26 simpr 476 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → ∀𝑦𝐹 (𝑦𝑥) ≠ ∅)
27 ineq2 3841 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝑥 → (𝑦𝑓) = (𝑦𝑥))
2827neeq1d 2882 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑥 → ((𝑦𝑓) ≠ ∅ ↔ (𝑦𝑥) ≠ ∅))
2921, 28ralsn 4254 . . . . . . . . . . . . . . . . . . 19 (∀𝑓 ∈ {𝑥} (𝑦𝑓) ≠ ∅ ↔ (𝑦𝑥) ≠ ∅)
3029ralbii 3009 . . . . . . . . . . . . . . . . . 18 (∀𝑦𝐹𝑓 ∈ {𝑥} (𝑦𝑓) ≠ ∅ ↔ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅)
3126, 30sylibr 224 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → ∀𝑦𝐹𝑓 ∈ {𝑥} (𝑦𝑓) ≠ ∅)
32 filfbas 21699 . . . . . . . . . . . . . . . . . . 19 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋))
3332ad2antrr 762 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → 𝐹 ∈ (fBas‘𝑋))
34 simplr 807 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → 𝑥𝑋)
35 inss2 3867 . . . . . . . . . . . . . . . . . . . 20 (𝑋𝑥) ⊆ 𝑥
36 filtop 21706 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
3736adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) → 𝑋𝐹)
38 ineq1 3840 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑋 → (𝑦𝑥) = (𝑋𝑥))
3938neeq1d 2882 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑋 → ((𝑦𝑥) ≠ ∅ ↔ (𝑋𝑥) ≠ ∅))
4039rspcva 3338 . . . . . . . . . . . . . . . . . . . . 21 ((𝑋𝐹 ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (𝑋𝑥) ≠ ∅)
4137, 40sylan 487 . . . . . . . . . . . . . . . . . . . 20 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (𝑋𝑥) ≠ ∅)
42 ssn0 4009 . . . . . . . . . . . . . . . . . . . 20 (((𝑋𝑥) ⊆ 𝑥 ∧ (𝑋𝑥) ≠ ∅) → 𝑥 ≠ ∅)
4335, 41, 42sylancr 696 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → 𝑥 ≠ ∅)
4436ad2antrr 762 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → 𝑋𝐹)
45 snfbas 21717 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑋𝑥 ≠ ∅ ∧ 𝑋𝐹) → {𝑥} ∈ (fBas‘𝑋))
4634, 43, 44, 45syl3anc 1366 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → {𝑥} ∈ (fBas‘𝑋))
47 fbunfip 21720 . . . . . . . . . . . . . . . . . 18 ((𝐹 ∈ (fBas‘𝑋) ∧ {𝑥} ∈ (fBas‘𝑋)) → (¬ ∅ ∈ (fi‘(𝐹 ∪ {𝑥})) ↔ ∀𝑦𝐹𝑓 ∈ {𝑥} (𝑦𝑓) ≠ ∅))
4833, 46, 47syl2anc 694 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (¬ ∅ ∈ (fi‘(𝐹 ∪ {𝑥})) ↔ ∀𝑦𝐹𝑓 ∈ {𝑥} (𝑦𝑓) ≠ ∅))
4931, 48mpbird 247 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → ¬ ∅ ∈ (fi‘(𝐹 ∪ {𝑥})))
50 fsubbas 21718 . . . . . . . . . . . . . . . . 17 (𝑋𝐹 → ((fi‘(𝐹 ∪ {𝑥})) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ {𝑥}) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ {𝑥}) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ {𝑥})))))
5144, 50syl 17 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → ((fi‘(𝐹 ∪ {𝑥})) ∈ (fBas‘𝑋) ↔ ((𝐹 ∪ {𝑥}) ⊆ 𝒫 𝑋 ∧ (𝐹 ∪ {𝑥}) ≠ ∅ ∧ ¬ ∅ ∈ (fi‘(𝐹 ∪ {𝑥})))))
5219, 25, 49, 51mpbir3and 1264 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (fi‘(𝐹 ∪ {𝑥})) ∈ (fBas‘𝑋))
53 ssfg 21723 . . . . . . . . . . . . . . 15 ((fi‘(𝐹 ∪ {𝑥})) ∈ (fBas‘𝑋) → (fi‘(𝐹 ∪ {𝑥})) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))))
5452, 53syl 17 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (fi‘(𝐹 ∪ {𝑥})) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))))
5513, 54sstrd 3646 . . . . . . . . . . . . 13 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (𝐹 ∪ {𝑥}) ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))))
5655unssad 3823 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → 𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))))
57 fgcl 21729 . . . . . . . . . . . . 13 ((fi‘(𝐹 ∪ {𝑥})) ∈ (fBas‘𝑋) → (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))) ∈ (Fil‘𝑋))
58 sseq2 3660 . . . . . . . . . . . . . . 15 (𝑓 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))) → (𝐹𝑓𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥})))))
59 eqeq2 2662 . . . . . . . . . . . . . . 15 (𝑓 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))) → (𝐹 = 𝑓𝐹 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥})))))
6058, 59imbi12d 333 . . . . . . . . . . . . . 14 (𝑓 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))) → ((𝐹𝑓𝐹 = 𝑓) ↔ (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))) → 𝐹 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))))))
6160rspcv 3336 . . . . . . . . . . . . 13 ((𝑋filGen(fi‘(𝐹 ∪ {𝑥}))) ∈ (Fil‘𝑋) → (∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓) → (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))) → 𝐹 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))))))
6252, 57, 613syl 18 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓) → (𝐹 ⊆ (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))) → 𝐹 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))))))
6356, 62mpid 44 . . . . . . . . . . 11 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓) → 𝐹 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥})))))
64 vsnid 4242 . . . . . . . . . . . . . . 15 𝑥 ∈ {𝑥}
6520, 64sselii 3633 . . . . . . . . . . . . . 14 𝑥 ∈ (𝐹 ∪ {𝑥})
6665a1i 11 . . . . . . . . . . . . 13 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → 𝑥 ∈ (𝐹 ∪ {𝑥}))
6755, 66sseldd 3637 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → 𝑥 ∈ (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))))
68 eleq2 2719 . . . . . . . . . . . 12 (𝐹 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))) → (𝑥𝐹𝑥 ∈ (𝑋filGen(fi‘(𝐹 ∪ {𝑥})))))
6967, 68syl5ibrcom 237 . . . . . . . . . . 11 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (𝐹 = (𝑋filGen(fi‘(𝐹 ∪ {𝑥}))) → 𝑥𝐹))
7063, 69syld 47 . . . . . . . . . 10 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅) → (∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓) → 𝑥𝐹))
7170impancom 455 . . . . . . . . 9 (((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)) → (∀𝑦𝐹 (𝑦𝑥) ≠ ∅ → 𝑥𝐹))
7271an32s 863 . . . . . . . 8 (((𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)) ∧ 𝑥𝑋) → (∀𝑦𝐹 (𝑦𝑥) ≠ ∅ → 𝑥𝐹))
7372con3d 148 . . . . . . 7 (((𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)) ∧ 𝑥𝑋) → (¬ 𝑥𝐹 → ¬ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅))
74 rexnal 3024 . . . . . . . . 9 (∃𝑦𝐹 ¬ (𝑦𝑥) ≠ ∅ ↔ ¬ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅)
75 nne 2827 . . . . . . . . . . 11 (¬ (𝑦𝑥) ≠ ∅ ↔ (𝑦𝑥) = ∅)
76 filelss 21703 . . . . . . . . . . . . 13 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹) → 𝑦𝑋)
77 reldisj 4053 . . . . . . . . . . . . 13 (𝑦𝑋 → ((𝑦𝑥) = ∅ ↔ 𝑦 ⊆ (𝑋𝑥)))
7876, 77syl 17 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹) → ((𝑦𝑥) = ∅ ↔ 𝑦 ⊆ (𝑋𝑥)))
79 difss 3770 . . . . . . . . . . . . . 14 (𝑋𝑥) ⊆ 𝑋
80 filss 21704 . . . . . . . . . . . . . . 15 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑦𝐹 ∧ (𝑋𝑥) ⊆ 𝑋𝑦 ⊆ (𝑋𝑥))) → (𝑋𝑥) ∈ 𝐹)
81803exp2 1307 . . . . . . . . . . . . . 14 (𝐹 ∈ (Fil‘𝑋) → (𝑦𝐹 → ((𝑋𝑥) ⊆ 𝑋 → (𝑦 ⊆ (𝑋𝑥) → (𝑋𝑥) ∈ 𝐹))))
8279, 81mpii 46 . . . . . . . . . . . . 13 (𝐹 ∈ (Fil‘𝑋) → (𝑦𝐹 → (𝑦 ⊆ (𝑋𝑥) → (𝑋𝑥) ∈ 𝐹)))
8382imp 444 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹) → (𝑦 ⊆ (𝑋𝑥) → (𝑋𝑥) ∈ 𝐹))
8478, 83sylbid 230 . . . . . . . . . . 11 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹) → ((𝑦𝑥) = ∅ → (𝑋𝑥) ∈ 𝐹))
8575, 84syl5bi 232 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑦𝐹) → (¬ (𝑦𝑥) ≠ ∅ → (𝑋𝑥) ∈ 𝐹))
8685rexlimdva 3060 . . . . . . . . 9 (𝐹 ∈ (Fil‘𝑋) → (∃𝑦𝐹 ¬ (𝑦𝑥) ≠ ∅ → (𝑋𝑥) ∈ 𝐹))
8774, 86syl5bir 233 . . . . . . . 8 (𝐹 ∈ (Fil‘𝑋) → (¬ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅ → (𝑋𝑥) ∈ 𝐹))
8887ad2antrr 762 . . . . . . 7 (((𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)) ∧ 𝑥𝑋) → (¬ ∀𝑦𝐹 (𝑦𝑥) ≠ ∅ → (𝑋𝑥) ∈ 𝐹))
8973, 88syld 47 . . . . . 6 (((𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)) ∧ 𝑥𝑋) → (¬ 𝑥𝐹 → (𝑋𝑥) ∈ 𝐹))
9089orrd 392 . . . . 5 (((𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)) ∧ 𝑥𝑋) → (𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹))
917, 90sylan2b 491 . . . 4 (((𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)) ∧ 𝑥 ∈ 𝒫 𝑋) → (𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹))
9291ralrimiva 2995 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)) → ∀𝑥 ∈ 𝒫 𝑋(𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹))
93 isufil 21754 . . 3 (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹)))
946, 92, 93sylanbrc 699 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)) → 𝐹 ∈ (UFil‘𝑋))
955, 94impbii 199 1 (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑓 ∈ (Fil‘𝑋)(𝐹𝑓𝐹 = 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  Vcvv 3231  cdif 3604  cun 3605  cin 3606  wss 3607  c0 3948  𝒫 cpw 4191  {csn 4210  cfv 5926  (class class class)co 6690  ficfi 8357  fBascfbas 19782  filGencfg 19783  Filcfil 21696  UFilcufil 21750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-fin 8001  df-fi 8358  df-fbas 19791  df-fg 19792  df-fil 21697  df-ufil 21752
This theorem is referenced by:  filssufilg  21762  fmufil  21810
  Copyright terms: Public domain W3C validator