![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isucn | Structured version Visualization version GIF version |
Description: The predicate "𝐹 is a uniformly continuous function from uniform space 𝑈 to uniform space 𝑉." (Contributed by Thierry Arnoux, 16-Nov-2017.) |
Ref | Expression |
---|---|
isucn | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ucnval 22128 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝑈 Cnu𝑉) = {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦))}) | |
2 | 1 | eleq2d 2716 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ 𝐹 ∈ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦))})) |
3 | fveq1 6228 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
4 | fveq1 6228 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) | |
5 | 3, 4 | breq12d 4698 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥)𝑠(𝑓‘𝑦) ↔ (𝐹‘𝑥)𝑠(𝐹‘𝑦))) |
6 | 5 | imbi2d 329 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → ((𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦)) ↔ (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
7 | 6 | ralbidv 3015 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦)) ↔ ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
8 | 7 | rexralbidv 3087 | . . . . 5 ⊢ (𝑓 = 𝐹 → (∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦)) ↔ ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
9 | 8 | ralbidv 3015 | . . . 4 ⊢ (𝑓 = 𝐹 → (∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦)) ↔ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
10 | 9 | elrab 3396 | . . 3 ⊢ (𝐹 ∈ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦))} ↔ (𝐹 ∈ (𝑌 ↑𝑚 𝑋) ∧ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦)))) |
11 | 2, 10 | syl6bb 276 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹 ∈ (𝑌 ↑𝑚 𝑋) ∧ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))))) |
12 | elfvex 6259 | . . . 4 ⊢ (𝑉 ∈ (UnifOn‘𝑌) → 𝑌 ∈ V) | |
13 | elfvex 6259 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 ∈ V) | |
14 | elmapg 7912 | . . . 4 ⊢ ((𝑌 ∈ V ∧ 𝑋 ∈ V) → (𝐹 ∈ (𝑌 ↑𝑚 𝑋) ↔ 𝐹:𝑋⟶𝑌)) | |
15 | 12, 13, 14 | syl2anr 494 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑌 ↑𝑚 𝑋) ↔ 𝐹:𝑋⟶𝑌)) |
16 | 15 | anbi1d 741 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → ((𝐹 ∈ (𝑌 ↑𝑚 𝑋) ∧ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))))) |
17 | 11, 16 | bitrd 268 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ (UnifOn‘𝑌)) → (𝐹 ∈ (𝑈 Cnu𝑉) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑠 ∈ 𝑉 ∃𝑟 ∈ 𝑈 ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝑥𝑟𝑦 → (𝐹‘𝑥)𝑠(𝐹‘𝑦))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 ∃wrex 2942 {crab 2945 Vcvv 3231 class class class wbr 4685 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ↑𝑚 cmap 7899 UnifOncust 22050 Cnucucn 22126 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-map 7901 df-ust 22051 df-ucn 22127 |
This theorem is referenced by: isucn2 22130 ucnima 22132 iducn 22134 cstucnd 22135 ucncn 22136 fmucnd 22143 ucnextcn 22155 |
Copyright terms: Public domain | W3C validator |