MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istrkg3ld Structured version   Visualization version   GIF version

Theorem istrkg3ld 25405
Description: Property of fulfilling the lower dimension 3 axiom. (Contributed by Thierry Arnoux, 12-Jul-2020.)
Hypotheses
Ref Expression
istrkg.p 𝑃 = (Base‘𝐺)
istrkg.d = (dist‘𝐺)
istrkg.i 𝐼 = (Itv‘𝐺)
Assertion
Ref Expression
istrkg3ld (𝐺𝑉 → (𝐺DimTarskiG≥3 ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
Distinct variable groups:   𝑣,𝑢,𝑥,𝑦,𝑧,𝐼   𝑢,𝑃,𝑣,𝑥,𝑦,𝑧   𝑢, ,𝑣,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧,𝑣,𝑢)   𝑉(𝑥,𝑦,𝑧,𝑣,𝑢)

Proof of Theorem istrkg3ld
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3z 11448 . . . . 5 3 ∈ ℤ
2 2re 11128 . . . . . 6 2 ∈ ℝ
3 3re 11132 . . . . . 6 3 ∈ ℝ
4 2lt3 11233 . . . . . 6 2 < 3
52, 3, 4ltleii 10198 . . . . 5 2 ≤ 3
6 2z 11447 . . . . . 6 2 ∈ ℤ
76eluz1i 11733 . . . . 5 (3 ∈ (ℤ‘2) ↔ (3 ∈ ℤ ∧ 2 ≤ 3))
81, 5, 7mpbir2an 975 . . . 4 3 ∈ (ℤ‘2)
98a1i 11 . . 3 (𝐺𝑉 → 3 ∈ (ℤ‘2))
10 istrkg.p . . . 4 𝑃 = (Base‘𝐺)
11 istrkg.d . . . 4 = (dist‘𝐺)
12 istrkg.i . . . 4 𝐼 = (Itv‘𝐺)
1310, 11, 12istrkgld 25403 . . 3 ((𝐺𝑉 ∧ 3 ∈ (ℤ‘2)) → (𝐺DimTarskiG≥3 ↔ ∃𝑓(𝑓:(1..^3)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
149, 13mpdan 703 . 2 (𝐺𝑉 → (𝐺DimTarskiG≥3 ↔ ∃𝑓(𝑓:(1..^3)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
15 fzo13pr 12592 . . . . . 6 (1..^3) = {1, 2}
16 f1eq2 6135 . . . . . 6 ((1..^3) = {1, 2} → (𝑓:(1..^3)–1-1𝑃𝑓:{1, 2}–1-1𝑃))
1715, 16ax-mp 5 . . . . 5 (𝑓:(1..^3)–1-1𝑃𝑓:{1, 2}–1-1𝑃)
1817anbi1i 731 . . . 4 ((𝑓:(1..^3)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ (𝑓:{1, 2}–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
1918exbii 1814 . . 3 (∃𝑓(𝑓:(1..^3)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑓(𝑓:{1, 2}–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
2019a1i 11 . 2 (𝐺𝑉 → (∃𝑓(𝑓:(1..^3)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑓(𝑓:{1, 2}–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
21 1z 11445 . . . 4 1 ∈ ℤ
22 1ne2 11278 . . . 4 1 ≠ 2
23 oveq1 6697 . . . . . . . . . . 11 (𝑢 = (𝑓‘1) → (𝑢 𝑥) = ((𝑓‘1) 𝑥))
24 eqidd 2652 . . . . . . . . . . 11 (𝑢 = (𝑓‘1) → (𝑣 𝑥) = (𝑣 𝑥))
2523, 24eqeq12d 2666 . . . . . . . . . 10 (𝑢 = (𝑓‘1) → ((𝑢 𝑥) = (𝑣 𝑥) ↔ ((𝑓‘1) 𝑥) = (𝑣 𝑥)))
26 oveq1 6697 . . . . . . . . . . 11 (𝑢 = (𝑓‘1) → (𝑢 𝑦) = ((𝑓‘1) 𝑦))
27 eqidd 2652 . . . . . . . . . . 11 (𝑢 = (𝑓‘1) → (𝑣 𝑦) = (𝑣 𝑦))
2826, 27eqeq12d 2666 . . . . . . . . . 10 (𝑢 = (𝑓‘1) → ((𝑢 𝑦) = (𝑣 𝑦) ↔ ((𝑓‘1) 𝑦) = (𝑣 𝑦)))
29 oveq1 6697 . . . . . . . . . . 11 (𝑢 = (𝑓‘1) → (𝑢 𝑧) = ((𝑓‘1) 𝑧))
30 eqidd 2652 . . . . . . . . . . 11 (𝑢 = (𝑓‘1) → (𝑣 𝑧) = (𝑣 𝑧))
3129, 30eqeq12d 2666 . . . . . . . . . 10 (𝑢 = (𝑓‘1) → ((𝑢 𝑧) = (𝑣 𝑧) ↔ ((𝑓‘1) 𝑧) = (𝑣 𝑧)))
3225, 28, 313anbi123d 1439 . . . . . . . . 9 (𝑢 = (𝑓‘1) → (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ↔ (((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧))))
3332anbi1d 741 . . . . . . . 8 (𝑢 = (𝑓‘1) → ((((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
3433rexbidv 3081 . . . . . . 7 (𝑢 = (𝑓‘1) → (∃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑧𝑃 ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
3534rexbidv 3081 . . . . . 6 (𝑢 = (𝑓‘1) → (∃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑦𝑃𝑧𝑃 ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
3635rexbidv 3081 . . . . 5 (𝑢 = (𝑓‘1) → (∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
37 oveq1 6697 . . . . . . . . . . . 12 (𝑣 = (𝑓‘2) → (𝑣 𝑥) = ((𝑓‘2) 𝑥))
3837eqeq2d 2661 . . . . . . . . . . 11 (𝑣 = (𝑓‘2) → (((𝑓‘1) 𝑥) = (𝑣 𝑥) ↔ ((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥)))
39 oveq1 6697 . . . . . . . . . . . 12 (𝑣 = (𝑓‘2) → (𝑣 𝑦) = ((𝑓‘2) 𝑦))
4039eqeq2d 2661 . . . . . . . . . . 11 (𝑣 = (𝑓‘2) → (((𝑓‘1) 𝑦) = (𝑣 𝑦) ↔ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦)))
41 oveq1 6697 . . . . . . . . . . . 12 (𝑣 = (𝑓‘2) → (𝑣 𝑧) = ((𝑓‘2) 𝑧))
4241eqeq2d 2661 . . . . . . . . . . 11 (𝑣 = (𝑓‘2) → (((𝑓‘1) 𝑧) = (𝑣 𝑧) ↔ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧)))
4338, 40, 423anbi123d 1439 . . . . . . . . . 10 (𝑣 = (𝑓‘2) → ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ↔ (((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧))))
44 2p1e3 11189 . . . . . . . . . . . . . 14 (2 + 1) = 3
4544oveq2i 6701 . . . . . . . . . . . . 13 (2..^(2 + 1)) = (2..^3)
46 fzosn 12578 . . . . . . . . . . . . . 14 (2 ∈ ℤ → (2..^(2 + 1)) = {2})
476, 46ax-mp 5 . . . . . . . . . . . . 13 (2..^(2 + 1)) = {2}
4845, 47eqtr3i 2675 . . . . . . . . . . . 12 (2..^3) = {2}
4948raleqi 3172 . . . . . . . . . . 11 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ ∀𝑗 ∈ {2} (((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)))
50 fveq2 6229 . . . . . . . . . . . . . . . 16 (𝑗 = 2 → (𝑓𝑗) = (𝑓‘2))
5150oveq1d 6705 . . . . . . . . . . . . . . 15 (𝑗 = 2 → ((𝑓𝑗) 𝑥) = ((𝑓‘2) 𝑥))
5251eqeq2d 2661 . . . . . . . . . . . . . 14 (𝑗 = 2 → (((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ↔ ((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥)))
5350oveq1d 6705 . . . . . . . . . . . . . . 15 (𝑗 = 2 → ((𝑓𝑗) 𝑦) = ((𝑓‘2) 𝑦))
5453eqeq2d 2661 . . . . . . . . . . . . . 14 (𝑗 = 2 → (((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ↔ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦)))
5550oveq1d 6705 . . . . . . . . . . . . . . 15 (𝑗 = 2 → ((𝑓𝑗) 𝑧) = ((𝑓‘2) 𝑧))
5655eqeq2d 2661 . . . . . . . . . . . . . 14 (𝑗 = 2 → (((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧) ↔ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧)))
5752, 54, 563anbi123d 1439 . . . . . . . . . . . . 13 (𝑗 = 2 → ((((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ (((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧))))
5857ralsng 4250 . . . . . . . . . . . 12 (2 ∈ ℤ → (∀𝑗 ∈ {2} (((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ (((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧))))
596, 58ax-mp 5 . . . . . . . . . . 11 (∀𝑗 ∈ {2} (((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ (((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧)))
6049, 59bitri 264 . . . . . . . . . 10 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ (((𝑓‘1) 𝑥) = ((𝑓‘2) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓‘2) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓‘2) 𝑧)))
6143, 60syl6bbr 278 . . . . . . . . 9 (𝑣 = (𝑓‘2) → ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ↔ ∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧))))
6261anbi1d 741 . . . . . . . 8 (𝑣 = (𝑓‘2) → (((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
6362rexbidv 3081 . . . . . . 7 (𝑣 = (𝑓‘2) → (∃𝑧𝑃 ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
6463rexbidv 3081 . . . . . 6 (𝑣 = (𝑓‘2) → (∃𝑦𝑃𝑧𝑃 ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
6564rexbidv 3081 . . . . 5 (𝑣 = (𝑓‘2) → (∃𝑥𝑃𝑦𝑃𝑧𝑃 ((((𝑓‘1) 𝑥) = (𝑣 𝑥) ∧ ((𝑓‘1) 𝑦) = (𝑣 𝑦) ∧ ((𝑓‘1) 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
6636, 65f1prex 6579 . . . 4 ((1 ∈ ℤ ∧ 2 ∈ ℤ ∧ 1 ≠ 2) → (∃𝑓(𝑓:{1, 2}–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
6721, 6, 22, 66mp3an 1464 . . 3 (∃𝑓(𝑓:{1, 2}–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
6867a1i 11 . 2 (𝐺𝑉 → (∃𝑓(𝑓:{1, 2}–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^3)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
6914, 20, 683bitrd 294 1 (𝐺𝑉 → (𝐺DimTarskiG≥3 ↔ ∃𝑢𝑃𝑣𝑃 (𝑢𝑣 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (((𝑢 𝑥) = (𝑣 𝑥) ∧ (𝑢 𝑦) = (𝑣 𝑦) ∧ (𝑢 𝑧) = (𝑣 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3o 1053  w3a 1054   = wceq 1523  wex 1744  wcel 2030  wne 2823  wral 2941  wrex 2942  {csn 4210  {cpr 4212   class class class wbr 4685  1-1wf1 5923  cfv 5926  (class class class)co 6690  1c1 9975   + caddc 9977  cle 10113  2c2 11108  3c3 11109  cz 11415  cuz 11725  ..^cfzo 12504  Basecbs 15904  distcds 15997  DimTarskiGcstrkgld 25378  Itvcitv 25380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-trkgld 25396
This theorem is referenced by:  axtgupdim2  25415
  Copyright terms: Public domain W3C validator