MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istrkg2ld Structured version   Visualization version   GIF version

Theorem istrkg2ld 25404
Description: Property of fulfilling the lower dimension 2 axiom. (Contributed by Thierry Arnoux, 20-Nov-2019.)
Hypotheses
Ref Expression
istrkg.p 𝑃 = (Base‘𝐺)
istrkg.d = (dist‘𝐺)
istrkg.i 𝐼 = (Itv‘𝐺)
Assertion
Ref Expression
istrkg2ld (𝐺𝑉 → (𝐺DimTarskiG≥2 ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐼   𝑥,𝑃,𝑦,𝑧   𝑥, ,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem istrkg2ld
Dummy variables 𝑓 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2z 11447 . . . 4 2 ∈ ℤ
2 uzid 11740 . . . 4 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
31, 2ax-mp 5 . . 3 2 ∈ (ℤ‘2)
4 istrkg.p . . . 4 𝑃 = (Base‘𝐺)
5 istrkg.d . . . 4 = (dist‘𝐺)
6 istrkg.i . . . 4 𝐼 = (Itv‘𝐺)
74, 5, 6istrkgld 25403 . . 3 ((𝐺𝑉 ∧ 2 ∈ (ℤ‘2)) → (𝐺DimTarskiG≥2 ↔ ∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
83, 7mpan2 707 . 2 (𝐺𝑉 → (𝐺DimTarskiG≥2 ↔ ∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
9 r19.41v 3118 . . . . 5 (∃𝑥𝑃 (∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ∧ 𝑓:(1..^2)–1-1𝑃) ↔ (∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ∧ 𝑓:(1..^2)–1-1𝑃))
10 ancom 465 . . . . . 6 ((∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ∧ 𝑓:(1..^2)–1-1𝑃) ↔ (𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
1110rexbii 3070 . . . . 5 (∃𝑥𝑃 (∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ∧ 𝑓:(1..^2)–1-1𝑃) ↔ ∃𝑥𝑃 (𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
12 ancom 465 . . . . 5 ((∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ∧ 𝑓:(1..^2)–1-1𝑃) ↔ (𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
139, 11, 123bitr3ri 291 . . . 4 ((𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑥𝑃 (𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
1413exbii 1814 . . 3 (∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑓𝑥𝑃 (𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
15 rexcom4 3256 . . 3 (∃𝑥𝑃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑓𝑥𝑃 (𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
16 simpr 476 . . . . . . . . . 10 ((∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
1716reximi 3040 . . . . . . . . 9 (∃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ∃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
1817reximi 3040 . . . . . . . 8 (∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
1918adantl 481 . . . . . . 7 ((𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) → ∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
2019exlimiv 1898 . . . . . 6 (∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) → ∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
2120adantl 481 . . . . 5 ((𝑥𝑃 ∧ ∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))) → ∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
22 1ex 10073 . . . . . . . . . 10 1 ∈ V
23 vex 3234 . . . . . . . . . 10 𝑥 ∈ V
2422, 23f1osn 6214 . . . . . . . . 9 {⟨1, 𝑥⟩}:{1}–1-1-onto→{𝑥}
25 f1of1 6174 . . . . . . . . 9 ({⟨1, 𝑥⟩}:{1}–1-1-onto→{𝑥} → {⟨1, 𝑥⟩}:{1}–1-1→{𝑥})
2624, 25mp1i 13 . . . . . . . 8 (𝑥𝑃 → {⟨1, 𝑥⟩}:{1}–1-1→{𝑥})
27 snssi 4371 . . . . . . . 8 (𝑥𝑃 → {𝑥} ⊆ 𝑃)
28 f1ss 6144 . . . . . . . 8 (({⟨1, 𝑥⟩}:{1}–1-1→{𝑥} ∧ {𝑥} ⊆ 𝑃) → {⟨1, 𝑥⟩}:{1}–1-1𝑃)
2926, 27, 28syl2anc 694 . . . . . . 7 (𝑥𝑃 → {⟨1, 𝑥⟩}:{1}–1-1𝑃)
30 fzo12sn 12591 . . . . . . . . . . . 12 (1..^2) = {1}
31 mpteq1 4770 . . . . . . . . . . . 12 ((1..^2) = {1} → (𝑗 ∈ (1..^2) ↦ 𝑥) = (𝑗 ∈ {1} ↦ 𝑥))
3230, 31ax-mp 5 . . . . . . . . . . 11 (𝑗 ∈ (1..^2) ↦ 𝑥) = (𝑗 ∈ {1} ↦ 𝑥)
33 fmptsn 6474 . . . . . . . . . . . 12 ((1 ∈ V ∧ 𝑥 ∈ V) → {⟨1, 𝑥⟩} = (𝑗 ∈ {1} ↦ 𝑥))
3422, 23, 33mp2an 708 . . . . . . . . . . 11 {⟨1, 𝑥⟩} = (𝑗 ∈ {1} ↦ 𝑥)
3532, 34eqtr4i 2676 . . . . . . . . . 10 (𝑗 ∈ (1..^2) ↦ 𝑥) = {⟨1, 𝑥⟩}
3635a1i 11 . . . . . . . . 9 (⊤ → (𝑗 ∈ (1..^2) ↦ 𝑥) = {⟨1, 𝑥⟩})
3730a1i 11 . . . . . . . . 9 (⊤ → (1..^2) = {1})
38 eqidd 2652 . . . . . . . . 9 (⊤ → 𝑃 = 𝑃)
3936, 37, 38f1eq123d 6169 . . . . . . . 8 (⊤ → ((𝑗 ∈ (1..^2) ↦ 𝑥):(1..^2)–1-1𝑃 ↔ {⟨1, 𝑥⟩}:{1}–1-1𝑃))
4039trud 1533 . . . . . . 7 ((𝑗 ∈ (1..^2) ↦ 𝑥):(1..^2)–1-1𝑃 ↔ {⟨1, 𝑥⟩}:{1}–1-1𝑃)
4129, 40sylibr 224 . . . . . 6 (𝑥𝑃 → (𝑗 ∈ (1..^2) ↦ 𝑥):(1..^2)–1-1𝑃)
42 ral0 4109 . . . . . . . . . 10 𝑗 ∈ ∅ ((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧))
43 fzo0 12531 . . . . . . . . . . 11 (2..^2) = ∅
4443raleqi 3172 . . . . . . . . . 10 (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ↔ ∀𝑗 ∈ ∅ ((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)))
4542, 44mpbir 221 . . . . . . . . 9 𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧))
4645jctl 563 . . . . . . . 8 (¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) → (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
4746reximi 3040 . . . . . . 7 (∃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) → ∃𝑧𝑃 (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
4847reximi 3040 . . . . . 6 (∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) → ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
49 ovex 6718 . . . . . . . 8 (1..^2) ∈ V
5049mptex 6527 . . . . . . 7 (𝑗 ∈ (1..^2) ↦ 𝑥) ∈ V
51 f1eq1 6134 . . . . . . . 8 (𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) → (𝑓:(1..^2)–1-1𝑃 ↔ (𝑗 ∈ (1..^2) ↦ 𝑥):(1..^2)–1-1𝑃))
52 nfmpt1 4780 . . . . . . . . . . . . 13 𝑗(𝑗 ∈ (1..^2) ↦ 𝑥)
5352nfeq2 2809 . . . . . . . . . . . 12 𝑗 𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥)
54 nfv 1883 . . . . . . . . . . . 12 𝑗(𝑦𝑃𝑧𝑃)
5553, 54nfan 1868 . . . . . . . . . . 11 𝑗(𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃))
56 simpll 805 . . . . . . . . . . . . . . 15 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → 𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥))
5756fveq1d 6231 . . . . . . . . . . . . . 14 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → (𝑓‘1) = ((𝑗 ∈ (1..^2) ↦ 𝑥)‘1))
5857oveq1d 6705 . . . . . . . . . . . . 13 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((𝑓‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥))
5956fveq1d 6231 . . . . . . . . . . . . . 14 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → (𝑓𝑗) = ((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗))
6059oveq1d 6705 . . . . . . . . . . . . 13 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((𝑓𝑗) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥))
6158, 60eqeq12d 2666 . . . . . . . . . . . 12 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → (((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ↔ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥)))
6257oveq1d 6705 . . . . . . . . . . . . 13 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((𝑓‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦))
6359oveq1d 6705 . . . . . . . . . . . . 13 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((𝑓𝑗) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦))
6462, 63eqeq12d 2666 . . . . . . . . . . . 12 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → (((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ↔ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦)))
6557oveq1d 6705 . . . . . . . . . . . . 13 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((𝑓‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧))
6659oveq1d 6705 . . . . . . . . . . . . 13 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((𝑓𝑗) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧))
6765, 66eqeq12d 2666 . . . . . . . . . . . 12 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → (((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧) ↔ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)))
6861, 64, 673anbi123d 1439 . . . . . . . . . . 11 (((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) ∧ 𝑗 ∈ (2..^2)) → ((((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ ((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧))))
6955, 68ralbida 3011 . . . . . . . . . 10 ((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) → (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ↔ ∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧))))
7069anbi1d 741 . . . . . . . . 9 ((𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) ∧ (𝑦𝑃𝑧𝑃)) → ((∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
71702rexbidva 3085 . . . . . . . 8 (𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) → (∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
7251, 71anbi12d 747 . . . . . . 7 (𝑓 = (𝑗 ∈ (1..^2) ↦ 𝑥) → ((𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ((𝑗 ∈ (1..^2) ↦ 𝑥):(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))))
7350, 72spcev 3331 . . . . . 6 (((𝑗 ∈ (1..^2) ↦ 𝑥):(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)((((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑥) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑥) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑦) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑦) ∧ (((𝑗 ∈ (1..^2) ↦ 𝑥)‘1) 𝑧) = (((𝑗 ∈ (1..^2) ↦ 𝑥)‘𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) → ∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
7441, 48, 73syl2an 493 . . . . 5 ((𝑥𝑃 ∧ ∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) → ∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))
7521, 74impbida 895 . . . 4 (𝑥𝑃 → (∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
7675rexbiia 3069 . . 3 (∃𝑥𝑃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
7714, 15, 763bitr2i 288 . 2 (∃𝑓(𝑓:(1..^2)–1-1𝑃 ∧ ∃𝑥𝑃𝑦𝑃𝑧𝑃 (∀𝑗 ∈ (2..^2)(((𝑓‘1) 𝑥) = ((𝑓𝑗) 𝑥) ∧ ((𝑓‘1) 𝑦) = ((𝑓𝑗) 𝑦) ∧ ((𝑓‘1) 𝑧) = ((𝑓𝑗) 𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))
788, 77syl6bb 276 1 (𝐺𝑉 → (𝐺DimTarskiG≥2 ↔ ∃𝑥𝑃𝑦𝑃𝑧𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3o 1053  w3a 1054   = wceq 1523  wtru 1524  wex 1744  wcel 2030  wral 2941  wrex 2942  Vcvv 3231  wss 3607  c0 3948  {csn 4210  cop 4216   class class class wbr 4685  cmpt 4762  1-1wf1 5923  1-1-ontowf1o 5925  cfv 5926  (class class class)co 6690  1c1 9975  2c2 11108  cz 11415  cuz 11725  ..^cfzo 12504  Basecbs 15904  distcds 15997  DimTarskiGcstrkgld 25378  Itvcitv 25380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-trkgld 25396
This theorem is referenced by:  axtglowdim2  25414  tgdim01  25447
  Copyright terms: Public domain W3C validator