Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istopclsd Structured version   Visualization version   GIF version

Theorem istopclsd 37682
Description: A closure function which satisfies sscls 20983, clsidm 20994, cls0 21007, and clsun 32550 defines a (unique) topology which it is the closure function on. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
istopclsd.b (𝜑𝐵𝑉)
istopclsd.f (𝜑𝐹:𝒫 𝐵⟶𝒫 𝐵)
istopclsd.e ((𝜑𝑥𝐵) → 𝑥 ⊆ (𝐹𝑥))
istopclsd.i ((𝜑𝑥𝐵) → (𝐹‘(𝐹𝑥)) = (𝐹𝑥))
istopclsd.z (𝜑 → (𝐹‘∅) = ∅)
istopclsd.u ((𝜑𝑥𝐵𝑦𝐵) → (𝐹‘(𝑥𝑦)) = ((𝐹𝑥) ∪ (𝐹𝑦)))
istopclsd.j 𝐽 = {𝑧 ∈ 𝒫 𝐵 ∣ (𝐹‘(𝐵𝑧)) = (𝐵𝑧)}
Assertion
Ref Expression
istopclsd (𝜑 → (𝐽 ∈ (TopOn‘𝐵) ∧ (cls‘𝐽) = 𝐹))
Distinct variable groups:   𝑥,𝐵,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝐽,𝑦   𝑥,𝑉,𝑦,𝑧
Allowed substitution hint:   𝐽(𝑧)

Proof of Theorem istopclsd
StepHypRef Expression
1 istopclsd.j . . . 4 𝐽 = {𝑧 ∈ 𝒫 𝐵 ∣ (𝐹‘(𝐵𝑧)) = (𝐵𝑧)}
2 istopclsd.f . . . . . . . . 9 (𝜑𝐹:𝒫 𝐵⟶𝒫 𝐵)
3 ffn 6158 . . . . . . . . 9 (𝐹:𝒫 𝐵⟶𝒫 𝐵𝐹 Fn 𝒫 𝐵)
42, 3syl 17 . . . . . . . 8 (𝜑𝐹 Fn 𝒫 𝐵)
54adantr 472 . . . . . . 7 ((𝜑𝑧 ∈ 𝒫 𝐵) → 𝐹 Fn 𝒫 𝐵)
6 difss 3845 . . . . . . . . 9 (𝐵𝑧) ⊆ 𝐵
7 istopclsd.b . . . . . . . . . 10 (𝜑𝐵𝑉)
8 elpw2g 4932 . . . . . . . . . 10 (𝐵𝑉 → ((𝐵𝑧) ∈ 𝒫 𝐵 ↔ (𝐵𝑧) ⊆ 𝐵))
97, 8syl 17 . . . . . . . . 9 (𝜑 → ((𝐵𝑧) ∈ 𝒫 𝐵 ↔ (𝐵𝑧) ⊆ 𝐵))
106, 9mpbiri 248 . . . . . . . 8 (𝜑 → (𝐵𝑧) ∈ 𝒫 𝐵)
1110adantr 472 . . . . . . 7 ((𝜑𝑧 ∈ 𝒫 𝐵) → (𝐵𝑧) ∈ 𝒫 𝐵)
12 fnelfp 6557 . . . . . . 7 ((𝐹 Fn 𝒫 𝐵 ∧ (𝐵𝑧) ∈ 𝒫 𝐵) → ((𝐵𝑧) ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘(𝐵𝑧)) = (𝐵𝑧)))
135, 11, 12syl2anc 696 . . . . . 6 ((𝜑𝑧 ∈ 𝒫 𝐵) → ((𝐵𝑧) ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘(𝐵𝑧)) = (𝐵𝑧)))
1413bicomd 213 . . . . 5 ((𝜑𝑧 ∈ 𝒫 𝐵) → ((𝐹‘(𝐵𝑧)) = (𝐵𝑧) ↔ (𝐵𝑧) ∈ dom (𝐹 ∩ I )))
1514rabbidva 3292 . . . 4 (𝜑 → {𝑧 ∈ 𝒫 𝐵 ∣ (𝐹‘(𝐵𝑧)) = (𝐵𝑧)} = {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ dom (𝐹 ∩ I )})
161, 15syl5eq 2770 . . 3 (𝜑𝐽 = {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ dom (𝐹 ∩ I )})
17 istopclsd.e . . . . . 6 ((𝜑𝑥𝐵) → 𝑥 ⊆ (𝐹𝑥))
18 simp1 1128 . . . . . . . . 9 ((𝜑𝑥𝐵𝑦𝑥) → 𝜑)
19 simp2 1129 . . . . . . . . 9 ((𝜑𝑥𝐵𝑦𝑥) → 𝑥𝐵)
20 simp3 1130 . . . . . . . . . 10 ((𝜑𝑥𝐵𝑦𝑥) → 𝑦𝑥)
2120, 19sstrd 3719 . . . . . . . . 9 ((𝜑𝑥𝐵𝑦𝑥) → 𝑦𝐵)
22 istopclsd.u . . . . . . . . 9 ((𝜑𝑥𝐵𝑦𝐵) → (𝐹‘(𝑥𝑦)) = ((𝐹𝑥) ∪ (𝐹𝑦)))
2318, 19, 21, 22syl3anc 1439 . . . . . . . 8 ((𝜑𝑥𝐵𝑦𝑥) → (𝐹‘(𝑥𝑦)) = ((𝐹𝑥) ∪ (𝐹𝑦)))
24 ssequn2 3894 . . . . . . . . . . 11 (𝑦𝑥 ↔ (𝑥𝑦) = 𝑥)
2524biimpi 206 . . . . . . . . . 10 (𝑦𝑥 → (𝑥𝑦) = 𝑥)
26253ad2ant3 1127 . . . . . . . . 9 ((𝜑𝑥𝐵𝑦𝑥) → (𝑥𝑦) = 𝑥)
2726fveq2d 6308 . . . . . . . 8 ((𝜑𝑥𝐵𝑦𝑥) → (𝐹‘(𝑥𝑦)) = (𝐹𝑥))
2823, 27eqtr3d 2760 . . . . . . 7 ((𝜑𝑥𝐵𝑦𝑥) → ((𝐹𝑥) ∪ (𝐹𝑦)) = (𝐹𝑥))
29 ssequn2 3894 . . . . . . 7 ((𝐹𝑦) ⊆ (𝐹𝑥) ↔ ((𝐹𝑥) ∪ (𝐹𝑦)) = (𝐹𝑥))
3028, 29sylibr 224 . . . . . 6 ((𝜑𝑥𝐵𝑦𝑥) → (𝐹𝑦) ⊆ (𝐹𝑥))
31 istopclsd.i . . . . . 6 ((𝜑𝑥𝐵) → (𝐹‘(𝐹𝑥)) = (𝐹𝑥))
327, 2, 17, 30, 31ismrcd1 37680 . . . . 5 (𝜑 → dom (𝐹 ∩ I ) ∈ (Moore‘𝐵))
33 istopclsd.z . . . . . 6 (𝜑 → (𝐹‘∅) = ∅)
34 0elpw 4939 . . . . . . 7 ∅ ∈ 𝒫 𝐵
35 fnelfp 6557 . . . . . . 7 ((𝐹 Fn 𝒫 𝐵 ∧ ∅ ∈ 𝒫 𝐵) → (∅ ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘∅) = ∅))
364, 34, 35sylancl 697 . . . . . 6 (𝜑 → (∅ ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘∅) = ∅))
3733, 36mpbird 247 . . . . 5 (𝜑 → ∅ ∈ dom (𝐹 ∩ I ))
38 simp1 1128 . . . . . . . 8 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → 𝜑)
39 inss1 3941 . . . . . . . . . . . . 13 (𝐹 ∩ I ) ⊆ 𝐹
40 dmss 5430 . . . . . . . . . . . . 13 ((𝐹 ∩ I ) ⊆ 𝐹 → dom (𝐹 ∩ I ) ⊆ dom 𝐹)
4139, 40ax-mp 5 . . . . . . . . . . . 12 dom (𝐹 ∩ I ) ⊆ dom 𝐹
42 fdm 6164 . . . . . . . . . . . . 13 (𝐹:𝒫 𝐵⟶𝒫 𝐵 → dom 𝐹 = 𝒫 𝐵)
432, 42syl 17 . . . . . . . . . . . 12 (𝜑 → dom 𝐹 = 𝒫 𝐵)
4441, 43syl5sseq 3759 . . . . . . . . . . 11 (𝜑 → dom (𝐹 ∩ I ) ⊆ 𝒫 𝐵)
45443ad2ant1 1125 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → dom (𝐹 ∩ I ) ⊆ 𝒫 𝐵)
46 simp2 1129 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → 𝑥 ∈ dom (𝐹 ∩ I ))
4745, 46sseldd 3710 . . . . . . . . 9 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → 𝑥 ∈ 𝒫 𝐵)
4847elpwid 4278 . . . . . . . 8 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → 𝑥𝐵)
49 simp3 1130 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → 𝑦 ∈ dom (𝐹 ∩ I ))
5045, 49sseldd 3710 . . . . . . . . 9 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → 𝑦 ∈ 𝒫 𝐵)
5150elpwid 4278 . . . . . . . 8 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → 𝑦𝐵)
5238, 48, 51, 22syl3anc 1439 . . . . . . 7 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝐹‘(𝑥𝑦)) = ((𝐹𝑥) ∪ (𝐹𝑦)))
5343ad2ant1 1125 . . . . . . . . . 10 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → 𝐹 Fn 𝒫 𝐵)
54 fnelfp 6557 . . . . . . . . . 10 ((𝐹 Fn 𝒫 𝐵𝑥 ∈ 𝒫 𝐵) → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝑥) = 𝑥))
5553, 47, 54syl2anc 696 . . . . . . . . 9 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝑥 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝑥) = 𝑥))
5646, 55mpbid 222 . . . . . . . 8 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝐹𝑥) = 𝑥)
57 fnelfp 6557 . . . . . . . . . 10 ((𝐹 Fn 𝒫 𝐵𝑦 ∈ 𝒫 𝐵) → (𝑦 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝑦) = 𝑦))
5853, 50, 57syl2anc 696 . . . . . . . . 9 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝑦 ∈ dom (𝐹 ∩ I ) ↔ (𝐹𝑦) = 𝑦))
5949, 58mpbid 222 . . . . . . . 8 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝐹𝑦) = 𝑦)
6056, 59uneq12d 3876 . . . . . . 7 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → ((𝐹𝑥) ∪ (𝐹𝑦)) = (𝑥𝑦))
6152, 60eqtrd 2758 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝐹‘(𝑥𝑦)) = (𝑥𝑦))
6248, 51unssd 3897 . . . . . . . 8 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝑥𝑦) ⊆ 𝐵)
63 vex 3307 . . . . . . . . . 10 𝑥 ∈ V
64 vex 3307 . . . . . . . . . 10 𝑦 ∈ V
6563, 64unex 7073 . . . . . . . . 9 (𝑥𝑦) ∈ V
6665elpw 4272 . . . . . . . 8 ((𝑥𝑦) ∈ 𝒫 𝐵 ↔ (𝑥𝑦) ⊆ 𝐵)
6762, 66sylibr 224 . . . . . . 7 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝑥𝑦) ∈ 𝒫 𝐵)
68 fnelfp 6557 . . . . . . 7 ((𝐹 Fn 𝒫 𝐵 ∧ (𝑥𝑦) ∈ 𝒫 𝐵) → ((𝑥𝑦) ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘(𝑥𝑦)) = (𝑥𝑦)))
6953, 67, 68syl2anc 696 . . . . . 6 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → ((𝑥𝑦) ∈ dom (𝐹 ∩ I ) ↔ (𝐹‘(𝑥𝑦)) = (𝑥𝑦)))
7061, 69mpbird 247 . . . . 5 ((𝜑𝑥 ∈ dom (𝐹 ∩ I ) ∧ 𝑦 ∈ dom (𝐹 ∩ I )) → (𝑥𝑦) ∈ dom (𝐹 ∩ I ))
71 eqid 2724 . . . . 5 {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ dom (𝐹 ∩ I )} = {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ dom (𝐹 ∩ I )}
7232, 37, 70, 71mretopd 21019 . . . 4 (𝜑 → ({𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ dom (𝐹 ∩ I )} ∈ (TopOn‘𝐵) ∧ dom (𝐹 ∩ I ) = (Clsd‘{𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ dom (𝐹 ∩ I )})))
7372simpld 477 . . 3 (𝜑 → {𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ dom (𝐹 ∩ I )} ∈ (TopOn‘𝐵))
7416, 73eqeltrd 2803 . 2 (𝜑𝐽 ∈ (TopOn‘𝐵))
75 topontop 20841 . . . . . 6 (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top)
7674, 75syl 17 . . . . 5 (𝜑𝐽 ∈ Top)
77 eqid 2724 . . . . . 6 (mrCls‘(Clsd‘𝐽)) = (mrCls‘(Clsd‘𝐽))
7877mrccls 21006 . . . . 5 (𝐽 ∈ Top → (cls‘𝐽) = (mrCls‘(Clsd‘𝐽)))
7976, 78syl 17 . . . 4 (𝜑 → (cls‘𝐽) = (mrCls‘(Clsd‘𝐽)))
8072simprd 482 . . . . . 6 (𝜑 → dom (𝐹 ∩ I ) = (Clsd‘{𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ dom (𝐹 ∩ I )}))
8116fveq2d 6308 . . . . . 6 (𝜑 → (Clsd‘𝐽) = (Clsd‘{𝑧 ∈ 𝒫 𝐵 ∣ (𝐵𝑧) ∈ dom (𝐹 ∩ I )}))
8280, 81eqtr4d 2761 . . . . 5 (𝜑 → dom (𝐹 ∩ I ) = (Clsd‘𝐽))
8382fveq2d 6308 . . . 4 (𝜑 → (mrCls‘dom (𝐹 ∩ I )) = (mrCls‘(Clsd‘𝐽)))
8479, 83eqtr4d 2761 . . 3 (𝜑 → (cls‘𝐽) = (mrCls‘dom (𝐹 ∩ I )))
857, 2, 17, 30, 31ismrcd2 37681 . . 3 (𝜑𝐹 = (mrCls‘dom (𝐹 ∩ I )))
8684, 85eqtr4d 2761 . 2 (𝜑 → (cls‘𝐽) = 𝐹)
8774, 86jca 555 1 (𝜑 → (𝐽 ∈ (TopOn‘𝐵) ∧ (cls‘𝐽) = 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1596  wcel 2103  {crab 3018  cdif 3677  cun 3678  cin 3679  wss 3680  c0 4023  𝒫 cpw 4266   I cid 5127  dom cdm 5218   Fn wfn 5996  wf 5997  cfv 6001  mrClscmrc 16366  Topctop 20821  TopOnctopon 20838  Clsdccld 20943  clsccl 20945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-iin 4631  df-br 4761  df-opab 4821  df-mpt 4838  df-id 5128  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-mre 16369  df-mrc 16370  df-top 20822  df-topon 20839  df-cld 20946  df-cls 20948
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator