![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > istmd | Structured version Visualization version GIF version |
Description: The predicate "is a topological monoid". (Contributed by Mario Carneiro, 19-Sep-2015.) |
Ref | Expression |
---|---|
istmd.1 | ⊢ 𝐹 = (+𝑓‘𝐺) |
istmd.2 | ⊢ 𝐽 = (TopOpen‘𝐺) |
Ref | Expression |
---|---|
istmd | ⊢ (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3945 | . . 3 ⊢ (𝐺 ∈ (Mnd ∩ TopSp) ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp)) | |
2 | 1 | anbi1i 602 | . 2 ⊢ ((𝐺 ∈ (Mnd ∩ TopSp) ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ↔ ((𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp) ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
3 | fvexd 6344 | . . . 4 ⊢ (𝑓 = 𝐺 → (TopOpen‘𝑓) ∈ V) | |
4 | simpl 468 | . . . . . . 7 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → 𝑓 = 𝐺) | |
5 | 4 | fveq2d 6336 | . . . . . 6 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → (+𝑓‘𝑓) = (+𝑓‘𝐺)) |
6 | istmd.1 | . . . . . 6 ⊢ 𝐹 = (+𝑓‘𝐺) | |
7 | 5, 6 | syl6eqr 2822 | . . . . 5 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → (+𝑓‘𝑓) = 𝐹) |
8 | id 22 | . . . . . . . 8 ⊢ (𝑗 = (TopOpen‘𝑓) → 𝑗 = (TopOpen‘𝑓)) | |
9 | fveq2 6332 | . . . . . . . . 9 ⊢ (𝑓 = 𝐺 → (TopOpen‘𝑓) = (TopOpen‘𝐺)) | |
10 | istmd.2 | . . . . . . . . 9 ⊢ 𝐽 = (TopOpen‘𝐺) | |
11 | 9, 10 | syl6eqr 2822 | . . . . . . . 8 ⊢ (𝑓 = 𝐺 → (TopOpen‘𝑓) = 𝐽) |
12 | 8, 11 | sylan9eqr 2826 | . . . . . . 7 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → 𝑗 = 𝐽) |
13 | 12, 12 | oveq12d 6810 | . . . . . 6 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → (𝑗 ×t 𝑗) = (𝐽 ×t 𝐽)) |
14 | 13, 12 | oveq12d 6810 | . . . . 5 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → ((𝑗 ×t 𝑗) Cn 𝑗) = ((𝐽 ×t 𝐽) Cn 𝐽)) |
15 | 7, 14 | eleq12d 2843 | . . . 4 ⊢ ((𝑓 = 𝐺 ∧ 𝑗 = (TopOpen‘𝑓)) → ((+𝑓‘𝑓) ∈ ((𝑗 ×t 𝑗) Cn 𝑗) ↔ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
16 | 3, 15 | sbcied 3622 | . . 3 ⊢ (𝑓 = 𝐺 → ([(TopOpen‘𝑓) / 𝑗](+𝑓‘𝑓) ∈ ((𝑗 ×t 𝑗) Cn 𝑗) ↔ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
17 | df-tmd 22095 | . . 3 ⊢ TopMnd = {𝑓 ∈ (Mnd ∩ TopSp) ∣ [(TopOpen‘𝑓) / 𝑗](+𝑓‘𝑓) ∈ ((𝑗 ×t 𝑗) Cn 𝑗)} | |
18 | 16, 17 | elrab2 3516 | . 2 ⊢ (𝐺 ∈ TopMnd ↔ (𝐺 ∈ (Mnd ∩ TopSp) ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
19 | df-3an 1072 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) ↔ ((𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp) ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) | |
20 | 2, 18, 19 | 3bitr4i 292 | 1 ⊢ (𝐺 ∈ TopMnd ↔ (𝐺 ∈ Mnd ∧ 𝐺 ∈ TopSp ∧ 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 Vcvv 3349 [wsbc 3585 ∩ cin 3720 ‘cfv 6031 (class class class)co 6792 TopOpenctopn 16289 +𝑓cplusf 17446 Mndcmnd 17501 TopSpctps 20956 Cn ccn 21248 ×t ctx 21583 TopMndctmd 22093 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-nul 4920 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-iota 5994 df-fv 6039 df-ov 6795 df-tmd 22095 |
This theorem is referenced by: tmdmnd 22098 tmdtps 22099 tmdcn 22106 istgp2 22114 oppgtmd 22120 symgtgp 22124 submtmd 22127 prdstmdd 22146 nrgtrg 22713 mhmhmeotmd 30307 xrge0tmdOLD 30325 |
Copyright terms: Public domain | W3C validator |