Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istendod Structured version   Visualization version   GIF version

Theorem istendod 36571
Description: Deduce the predicate "is a trace-preserving endomorphism". (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendoset.l = (le‘𝐾)
tendoset.h 𝐻 = (LHyp‘𝐾)
tendoset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoset.r 𝑅 = ((trL‘𝐾)‘𝑊)
tendoset.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
istendod.1 (𝜑 → (𝐾𝑉𝑊𝐻))
istendod.2 (𝜑𝑆:𝑇𝑇)
istendod.3 ((𝜑𝑓𝑇𝑔𝑇) → (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)))
istendod.4 ((𝜑𝑓𝑇) → (𝑅‘(𝑆𝑓)) (𝑅𝑓))
Assertion
Ref Expression
istendod (𝜑𝑆𝐸)
Distinct variable groups:   𝑓,𝑔,𝐾   𝑇,𝑓,𝑔   𝑓,𝑊,𝑔   𝑆,𝑓,𝑔   ,𝑓   𝑅,𝑓   𝜑,𝑓,𝑔
Allowed substitution hints:   𝑅(𝑔)   𝐸(𝑓,𝑔)   𝐻(𝑓,𝑔)   (𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem istendod
StepHypRef Expression
1 istendod.2 . 2 (𝜑𝑆:𝑇𝑇)
2 istendod.3 . . . 4 ((𝜑𝑓𝑇𝑔𝑇) → (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)))
323expb 1113 . . 3 ((𝜑 ∧ (𝑓𝑇𝑔𝑇)) → (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)))
43ralrimivva 3120 . 2 (𝜑 → ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)))
5 istendod.4 . . 3 ((𝜑𝑓𝑇) → (𝑅‘(𝑆𝑓)) (𝑅𝑓))
65ralrimiva 3115 . 2 (𝜑 → ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓))
7 istendod.1 . . 3 (𝜑 → (𝐾𝑉𝑊𝐻))
8 tendoset.l . . . 4 = (le‘𝐾)
9 tendoset.h . . . 4 𝐻 = (LHyp‘𝐾)
10 tendoset.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
11 tendoset.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
12 tendoset.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
138, 9, 10, 11, 12istendo 36569 . . 3 ((𝐾𝑉𝑊𝐻) → (𝑆𝐸 ↔ (𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓))))
147, 13syl 17 . 2 (𝜑 → (𝑆𝐸 ↔ (𝑆:𝑇𝑇 ∧ ∀𝑓𝑇𝑔𝑇 (𝑆‘(𝑓𝑔)) = ((𝑆𝑓) ∘ (𝑆𝑔)) ∧ ∀𝑓𝑇 (𝑅‘(𝑆𝑓)) (𝑅𝑓))))
151, 4, 6, 14mpbir3and 1427 1 (𝜑𝑆𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061   class class class wbr 4786  ccom 5253  wf 6027  cfv 6031  lecple 16156  LHypclh 35792  LTrncltrn 35909  trLctrl 35967  TEndoctendo 36561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-map 8011  df-tendo 36564
This theorem is referenced by:  tendoidcl  36578  tendococl  36581  tendoplcl  36590  tendo0cl  36599  tendoicl  36605  cdlemk56  36780
  Copyright terms: Public domain W3C validator