![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > istendo | Structured version Visualization version GIF version |
Description: The predicate "is a trace-preserving endomorphism". Similar to definition of trace-preserving endomorphism in [Crawley] p. 117, penultimate line. (Contributed by NM, 8-Jun-2013.) |
Ref | Expression |
---|---|
tendoset.l | ⊢ ≤ = (le‘𝐾) |
tendoset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendoset.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendoset.r | ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
tendoset.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
istendo | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ 𝐸 ↔ (𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendoset.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
2 | tendoset.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | tendoset.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
4 | tendoset.r | . . . 4 ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) | |
5 | tendoset.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
6 | 1, 2, 3, 4, 5 | tendoset 36568 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐸 = {𝑠 ∣ (𝑠:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑠‘𝑓)) ≤ (𝑅‘𝑓))}) |
7 | 6 | eleq2d 2826 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ 𝐸 ↔ 𝑆 ∈ {𝑠 ∣ (𝑠:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑠‘𝑓)) ≤ (𝑅‘𝑓))})) |
8 | fvex 6364 | . . . . . 6 ⊢ ((LTrn‘𝐾)‘𝑊) ∈ V | |
9 | 3, 8 | eqeltri 2836 | . . . . 5 ⊢ 𝑇 ∈ V |
10 | fex 6655 | . . . . 5 ⊢ ((𝑆:𝑇⟶𝑇 ∧ 𝑇 ∈ V) → 𝑆 ∈ V) | |
11 | 9, 10 | mpan2 709 | . . . 4 ⊢ (𝑆:𝑇⟶𝑇 → 𝑆 ∈ V) |
12 | 11 | 3ad2ant1 1128 | . . 3 ⊢ ((𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)) → 𝑆 ∈ V) |
13 | feq1 6188 | . . . 4 ⊢ (𝑠 = 𝑆 → (𝑠:𝑇⟶𝑇 ↔ 𝑆:𝑇⟶𝑇)) | |
14 | fveq1 6353 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝑠‘(𝑓 ∘ 𝑔)) = (𝑆‘(𝑓 ∘ 𝑔))) | |
15 | fveq1 6353 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (𝑠‘𝑓) = (𝑆‘𝑓)) | |
16 | fveq1 6353 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (𝑠‘𝑔) = (𝑆‘𝑔)) | |
17 | 15, 16 | coeq12d 5443 | . . . . . 6 ⊢ (𝑠 = 𝑆 → ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔))) |
18 | 14, 17 | eqeq12d 2776 | . . . . 5 ⊢ (𝑠 = 𝑆 → ((𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ↔ (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)))) |
19 | 18 | 2ralbidv 3128 | . . . 4 ⊢ (𝑠 = 𝑆 → (∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ↔ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)))) |
20 | 15 | fveq2d 6358 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝑅‘(𝑠‘𝑓)) = (𝑅‘(𝑆‘𝑓))) |
21 | 20 | breq1d 4815 | . . . . 5 ⊢ (𝑠 = 𝑆 → ((𝑅‘(𝑠‘𝑓)) ≤ (𝑅‘𝑓) ↔ (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓))) |
22 | 21 | ralbidv 3125 | . . . 4 ⊢ (𝑠 = 𝑆 → (∀𝑓 ∈ 𝑇 (𝑅‘(𝑠‘𝑓)) ≤ (𝑅‘𝑓) ↔ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓))) |
23 | 13, 19, 22 | 3anbi123d 1548 | . . 3 ⊢ (𝑠 = 𝑆 → ((𝑠:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑠‘𝑓)) ≤ (𝑅‘𝑓)) ↔ (𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)))) |
24 | 12, 23 | elab3 3499 | . 2 ⊢ (𝑆 ∈ {𝑠 ∣ (𝑠:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑠‘𝑓)) ≤ (𝑅‘𝑓))} ↔ (𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓))) |
25 | 7, 24 | syl6bb 276 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ 𝐸 ↔ (𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2140 {cab 2747 ∀wral 3051 Vcvv 3341 class class class wbr 4805 ∘ ccom 5271 ⟶wf 6046 ‘cfv 6050 lecple 16171 LHypclh 35792 LTrncltrn 35909 trLctrl 35967 TEndoctendo 36561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-map 8028 df-tendo 36564 |
This theorem is referenced by: tendotp 36570 istendod 36571 tendof 36572 tendovalco 36574 |
Copyright terms: Public domain | W3C validator |