MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ist1-2 Structured version   Visualization version   GIF version

Theorem ist1-2 21091
Description: An alternate characterization of T1 spaces. (Contributed by Jeff Hankins, 31-Jan-2010.) (Proof shortened by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
ist1-2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Fre ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝑜,𝐽   𝑜,𝑋,𝑥,𝑦

Proof of Theorem ist1-2
StepHypRef Expression
1 topontop 20658 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 eqid 2621 . . . . 5 𝐽 = 𝐽
32ist1 21065 . . . 4 (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑦 𝐽{𝑦} ∈ (Clsd‘𝐽)))
43baib 943 . . 3 (𝐽 ∈ Top → (𝐽 ∈ Fre ↔ ∀𝑦 𝐽{𝑦} ∈ (Clsd‘𝐽)))
51, 4syl 17 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Fre ↔ ∀𝑦 𝐽{𝑦} ∈ (Clsd‘𝐽)))
6 toponuni 20659 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
76raleqdv 3137 . 2 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑦𝑋 {𝑦} ∈ (Clsd‘𝐽) ↔ ∀𝑦 𝐽{𝑦} ∈ (Clsd‘𝐽)))
81adantr 481 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → 𝐽 ∈ Top)
9 eltop2 20719 . . . . . 6 (𝐽 ∈ Top → (( 𝐽 ∖ {𝑦}) ∈ 𝐽 ↔ ∀𝑥 ∈ ( 𝐽 ∖ {𝑦})∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))))
108, 9syl 17 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → (( 𝐽 ∖ {𝑦}) ∈ 𝐽 ↔ ∀𝑥 ∈ ( 𝐽 ∖ {𝑦})∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))))
116eleq2d 2684 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → (𝑦𝑋𝑦 𝐽))
1211biimpa 501 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → 𝑦 𝐽)
1312snssd 4316 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → {𝑦} ⊆ 𝐽)
142iscld2 20772 . . . . . 6 ((𝐽 ∈ Top ∧ {𝑦} ⊆ 𝐽) → ({𝑦} ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ {𝑦}) ∈ 𝐽))
158, 13, 14syl2anc 692 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → ({𝑦} ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ {𝑦}) ∈ 𝐽))
166adantr 481 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → 𝑋 = 𝐽)
1716eleq2d 2684 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → (𝑥𝑋𝑥 𝐽))
1817imbi1d 331 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → ((𝑥𝑋 → (𝑥𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})))) ↔ (𝑥 𝐽 → (𝑥𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))))))
19 con1b 348 . . . . . . . . 9 ((¬ 𝑥 = 𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))) ↔ (¬ ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})) → 𝑥 = 𝑦))
20 df-ne 2791 . . . . . . . . . 10 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
2120imbi1i 339 . . . . . . . . 9 ((𝑥𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))) ↔ (¬ 𝑥 = 𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))))
22 disjsn 4223 . . . . . . . . . . . . . . 15 ((𝑜 ∩ {𝑦}) = ∅ ↔ ¬ 𝑦𝑜)
23 elssuni 4440 . . . . . . . . . . . . . . . 16 (𝑜𝐽𝑜 𝐽)
24 reldisj 3998 . . . . . . . . . . . . . . . 16 (𝑜 𝐽 → ((𝑜 ∩ {𝑦}) = ∅ ↔ 𝑜 ⊆ ( 𝐽 ∖ {𝑦})))
2523, 24syl 17 . . . . . . . . . . . . . . 15 (𝑜𝐽 → ((𝑜 ∩ {𝑦}) = ∅ ↔ 𝑜 ⊆ ( 𝐽 ∖ {𝑦})))
2622, 25syl5bbr 274 . . . . . . . . . . . . . 14 (𝑜𝐽 → (¬ 𝑦𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})))
2726anbi2d 739 . . . . . . . . . . . . 13 (𝑜𝐽 → ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ↔ (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))))
2827rexbiia 3035 . . . . . . . . . . . 12 (∃𝑜𝐽 (𝑥𝑜 ∧ ¬ 𝑦𝑜) ↔ ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})))
29 rexanali 2994 . . . . . . . . . . . 12 (∃𝑜𝐽 (𝑥𝑜 ∧ ¬ 𝑦𝑜) ↔ ¬ ∀𝑜𝐽 (𝑥𝑜𝑦𝑜))
3028, 29bitr3i 266 . . . . . . . . . . 11 (∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})) ↔ ¬ ∀𝑜𝐽 (𝑥𝑜𝑦𝑜))
3130con2bii 347 . . . . . . . . . 10 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) ↔ ¬ ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})))
3231imbi1i 339 . . . . . . . . 9 ((∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ (¬ ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})) → 𝑥 = 𝑦))
3319, 21, 323bitr4ri 293 . . . . . . . 8 ((∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ (𝑥𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))))
3433imbi2i 326 . . . . . . 7 ((𝑥𝑋 → (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)) ↔ (𝑥𝑋 → (𝑥𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})))))
35 eldifsn 4294 . . . . . . . . 9 (𝑥 ∈ ( 𝐽 ∖ {𝑦}) ↔ (𝑥 𝐽𝑥𝑦))
3635imbi1i 339 . . . . . . . 8 ((𝑥 ∈ ( 𝐽 ∖ {𝑦}) → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))) ↔ ((𝑥 𝐽𝑥𝑦) → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))))
37 impexp 462 . . . . . . . 8 (((𝑥 𝐽𝑥𝑦) → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))) ↔ (𝑥 𝐽 → (𝑥𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})))))
3836, 37bitri 264 . . . . . . 7 ((𝑥 ∈ ( 𝐽 ∖ {𝑦}) → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))) ↔ (𝑥 𝐽 → (𝑥𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})))))
3918, 34, 383bitr4g 303 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → ((𝑥𝑋 → (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)) ↔ (𝑥 ∈ ( 𝐽 ∖ {𝑦}) → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})))))
4039ralbidv2 2980 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → (∀𝑥𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ ( 𝐽 ∖ {𝑦})∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))))
4110, 15, 403bitr4d 300 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → ({𝑦} ∈ (Clsd‘𝐽) ↔ ∀𝑥𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
4241ralbidva 2981 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑦𝑋 {𝑦} ∈ (Clsd‘𝐽) ↔ ∀𝑦𝑋𝑥𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
43 ralcom 3092 . . 3 (∀𝑦𝑋𝑥𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦))
4442, 43syl6bb 276 . 2 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑦𝑋 {𝑦} ∈ (Clsd‘𝐽) ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
455, 7, 443bitr2d 296 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Fre ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2908  wrex 2909  cdif 3557  cin 3559  wss 3560  c0 3897  {csn 4155   cuni 4409  cfv 5857  Topctop 20638  TopOnctopon 20655  Clsdccld 20760  Frect1 21051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-iota 5820  df-fun 5859  df-fv 5865  df-topgen 16044  df-top 20639  df-topon 20656  df-cld 20763  df-t1 21058
This theorem is referenced by:  t1t0  21092  ist1-3  21093  haust1  21096  t1sep2  21113  isr0  21480  tgpt0  21862
  Copyright terms: Public domain W3C validator