MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ist1-2 Structured version   Visualization version   GIF version

Theorem ist1-2 21373
Description: An alternate characterization of T1 spaces. (Contributed by Jeff Hankins, 31-Jan-2010.) (Proof shortened by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
ist1-2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Fre ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝑜,𝐽   𝑜,𝑋,𝑥,𝑦

Proof of Theorem ist1-2
StepHypRef Expression
1 topontop 20940 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 eqid 2760 . . . . 5 𝐽 = 𝐽
32ist1 21347 . . . 4 (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑦 𝐽{𝑦} ∈ (Clsd‘𝐽)))
43baib 982 . . 3 (𝐽 ∈ Top → (𝐽 ∈ Fre ↔ ∀𝑦 𝐽{𝑦} ∈ (Clsd‘𝐽)))
51, 4syl 17 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Fre ↔ ∀𝑦 𝐽{𝑦} ∈ (Clsd‘𝐽)))
6 toponuni 20941 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
76raleqdv 3283 . 2 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑦𝑋 {𝑦} ∈ (Clsd‘𝐽) ↔ ∀𝑦 𝐽{𝑦} ∈ (Clsd‘𝐽)))
81adantr 472 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → 𝐽 ∈ Top)
9 eltop2 21001 . . . . . 6 (𝐽 ∈ Top → (( 𝐽 ∖ {𝑦}) ∈ 𝐽 ↔ ∀𝑥 ∈ ( 𝐽 ∖ {𝑦})∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))))
108, 9syl 17 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → (( 𝐽 ∖ {𝑦}) ∈ 𝐽 ↔ ∀𝑥 ∈ ( 𝐽 ∖ {𝑦})∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))))
116eleq2d 2825 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → (𝑦𝑋𝑦 𝐽))
1211biimpa 502 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → 𝑦 𝐽)
1312snssd 4485 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → {𝑦} ⊆ 𝐽)
142iscld2 21054 . . . . . 6 ((𝐽 ∈ Top ∧ {𝑦} ⊆ 𝐽) → ({𝑦} ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ {𝑦}) ∈ 𝐽))
158, 13, 14syl2anc 696 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → ({𝑦} ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ {𝑦}) ∈ 𝐽))
166adantr 472 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → 𝑋 = 𝐽)
1716eleq2d 2825 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → (𝑥𝑋𝑥 𝐽))
1817imbi1d 330 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → ((𝑥𝑋 → (𝑥𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})))) ↔ (𝑥 𝐽 → (𝑥𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))))))
19 con1b 347 . . . . . . . . 9 ((¬ 𝑥 = 𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))) ↔ (¬ ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})) → 𝑥 = 𝑦))
20 df-ne 2933 . . . . . . . . . 10 (𝑥𝑦 ↔ ¬ 𝑥 = 𝑦)
2120imbi1i 338 . . . . . . . . 9 ((𝑥𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))) ↔ (¬ 𝑥 = 𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))))
22 disjsn 4390 . . . . . . . . . . . . . . 15 ((𝑜 ∩ {𝑦}) = ∅ ↔ ¬ 𝑦𝑜)
23 elssuni 4619 . . . . . . . . . . . . . . . 16 (𝑜𝐽𝑜 𝐽)
24 reldisj 4163 . . . . . . . . . . . . . . . 16 (𝑜 𝐽 → ((𝑜 ∩ {𝑦}) = ∅ ↔ 𝑜 ⊆ ( 𝐽 ∖ {𝑦})))
2523, 24syl 17 . . . . . . . . . . . . . . 15 (𝑜𝐽 → ((𝑜 ∩ {𝑦}) = ∅ ↔ 𝑜 ⊆ ( 𝐽 ∖ {𝑦})))
2622, 25syl5bbr 274 . . . . . . . . . . . . . 14 (𝑜𝐽 → (¬ 𝑦𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})))
2726anbi2d 742 . . . . . . . . . . . . 13 (𝑜𝐽 → ((𝑥𝑜 ∧ ¬ 𝑦𝑜) ↔ (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))))
2827rexbiia 3178 . . . . . . . . . . . 12 (∃𝑜𝐽 (𝑥𝑜 ∧ ¬ 𝑦𝑜) ↔ ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})))
29 rexanali 3136 . . . . . . . . . . . 12 (∃𝑜𝐽 (𝑥𝑜 ∧ ¬ 𝑦𝑜) ↔ ¬ ∀𝑜𝐽 (𝑥𝑜𝑦𝑜))
3028, 29bitr3i 266 . . . . . . . . . . 11 (∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})) ↔ ¬ ∀𝑜𝐽 (𝑥𝑜𝑦𝑜))
3130con2bii 346 . . . . . . . . . 10 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) ↔ ¬ ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})))
3231imbi1i 338 . . . . . . . . 9 ((∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ (¬ ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})) → 𝑥 = 𝑦))
3319, 21, 323bitr4ri 293 . . . . . . . 8 ((∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ (𝑥𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))))
3433imbi2i 325 . . . . . . 7 ((𝑥𝑋 → (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)) ↔ (𝑥𝑋 → (𝑥𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})))))
35 eldifsn 4462 . . . . . . . . 9 (𝑥 ∈ ( 𝐽 ∖ {𝑦}) ↔ (𝑥 𝐽𝑥𝑦))
3635imbi1i 338 . . . . . . . 8 ((𝑥 ∈ ( 𝐽 ∖ {𝑦}) → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))) ↔ ((𝑥 𝐽𝑥𝑦) → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))))
37 impexp 461 . . . . . . . 8 (((𝑥 𝐽𝑥𝑦) → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))) ↔ (𝑥 𝐽 → (𝑥𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})))))
3836, 37bitri 264 . . . . . . 7 ((𝑥 ∈ ( 𝐽 ∖ {𝑦}) → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))) ↔ (𝑥 𝐽 → (𝑥𝑦 → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})))))
3918, 34, 383bitr4g 303 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → ((𝑥𝑋 → (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)) ↔ (𝑥 ∈ ( 𝐽 ∖ {𝑦}) → ∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦})))))
4039ralbidv2 3122 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → (∀𝑥𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ ∀𝑥 ∈ ( 𝐽 ∖ {𝑦})∃𝑜𝐽 (𝑥𝑜𝑜 ⊆ ( 𝐽 ∖ {𝑦}))))
4110, 15, 403bitr4d 300 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑦𝑋) → ({𝑦} ∈ (Clsd‘𝐽) ↔ ∀𝑥𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
4241ralbidva 3123 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑦𝑋 {𝑦} ∈ (Clsd‘𝐽) ↔ ∀𝑦𝑋𝑥𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
43 ralcom 3236 . . 3 (∀𝑦𝑋𝑥𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦) ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦))
4442, 43syl6bb 276 . 2 (𝐽 ∈ (TopOn‘𝑋) → (∀𝑦𝑋 {𝑦} ∈ (Clsd‘𝐽) ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
455, 7, 443bitr2d 296 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐽 ∈ Fre ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wne 2932  wral 3050  wrex 3051  cdif 3712  cin 3714  wss 3715  c0 4058  {csn 4321   cuni 4588  cfv 6049  Topctop 20920  TopOnctopon 20937  Clsdccld 21042  Frect1 21333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-iota 6012  df-fun 6051  df-fv 6057  df-topgen 16326  df-top 20921  df-topon 20938  df-cld 21045  df-t1 21340
This theorem is referenced by:  t1t0  21374  ist1-3  21375  haust1  21378  t1sep2  21395  isr0  21762  tgpt0  22143
  Copyright terms: Public domain W3C validator