Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issubmgm2 Structured version   Visualization version   GIF version

Theorem issubmgm2 42269
Description: Submagmas are subsets that are also magmas. (Contributed by AV, 25-Feb-2020.)
Hypotheses
Ref Expression
issubmgm2.b 𝐵 = (Base‘𝑀)
issubmgm2.h 𝐻 = (𝑀s 𝑆)
Assertion
Ref Expression
issubmgm2 (𝑀 ∈ Mgm → (𝑆 ∈ (SubMgm‘𝑀) ↔ (𝑆𝐵𝐻 ∈ Mgm)))

Proof of Theorem issubmgm2
Dummy variables 𝑎 𝑏 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issubmgm2.b . . 3 𝐵 = (Base‘𝑀)
2 eqid 2748 . . 3 (+g𝑀) = (+g𝑀)
31, 2issubmgm 42268 . 2 (𝑀 ∈ Mgm → (𝑆 ∈ (SubMgm‘𝑀) ↔ (𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)))
4 issubmgm2.h . . . . . . 7 𝐻 = (𝑀s 𝑆)
54, 1ressbas2 16104 . . . . . 6 (𝑆𝐵𝑆 = (Base‘𝐻))
65ad2antlr 765 . . . . 5 (((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) → 𝑆 = (Base‘𝐻))
7 ovex 6829 . . . . . . 7 (𝑀s 𝑆) ∈ V
84, 7eqeltri 2823 . . . . . 6 𝐻 ∈ V
98a1i 11 . . . . 5 (((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) → 𝐻 ∈ V)
10 fvex 6350 . . . . . . . . 9 (Base‘𝑀) ∈ V
111, 10eqeltri 2823 . . . . . . . 8 𝐵 ∈ V
1211ssex 4942 . . . . . . 7 (𝑆𝐵𝑆 ∈ V)
1312ad2antlr 765 . . . . . 6 (((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) → 𝑆 ∈ V)
144, 2ressplusg 16166 . . . . . 6 (𝑆 ∈ V → (+g𝑀) = (+g𝐻))
1513, 14syl 17 . . . . 5 (((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) → (+g𝑀) = (+g𝐻))
16 oveq1 6808 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝑥(+g𝑀)𝑦) = (𝑎(+g𝑀)𝑦))
1716eleq1d 2812 . . . . . . . . 9 (𝑥 = 𝑎 → ((𝑥(+g𝑀)𝑦) ∈ 𝑆 ↔ (𝑎(+g𝑀)𝑦) ∈ 𝑆))
18 oveq2 6809 . . . . . . . . . 10 (𝑦 = 𝑏 → (𝑎(+g𝑀)𝑦) = (𝑎(+g𝑀)𝑏))
1918eleq1d 2812 . . . . . . . . 9 (𝑦 = 𝑏 → ((𝑎(+g𝑀)𝑦) ∈ 𝑆 ↔ (𝑎(+g𝑀)𝑏) ∈ 𝑆))
2017, 19rspc2v 3449 . . . . . . . 8 ((𝑎𝑆𝑏𝑆) → (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆 → (𝑎(+g𝑀)𝑏) ∈ 𝑆))
2120com12 32 . . . . . . 7 (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆 → ((𝑎𝑆𝑏𝑆) → (𝑎(+g𝑀)𝑏) ∈ 𝑆))
2221adantl 473 . . . . . 6 (((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) → ((𝑎𝑆𝑏𝑆) → (𝑎(+g𝑀)𝑏) ∈ 𝑆))
23223impib 1108 . . . . 5 ((((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) ∧ 𝑎𝑆𝑏𝑆) → (𝑎(+g𝑀)𝑏) ∈ 𝑆)
246, 9, 15, 23ismgmd 42255 . . . 4 (((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) → 𝐻 ∈ Mgm)
25 simplr 809 . . . . . . 7 ((((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝐻 ∈ Mgm)
26 simprl 811 . . . . . . . 8 ((((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥𝑆)
275ad3antlr 769 . . . . . . . 8 ((((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝑆 = (Base‘𝐻))
2826, 27eleqtrd 2829 . . . . . . 7 ((((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝑥 ∈ (Base‘𝐻))
29 simpr 479 . . . . . . . . 9 ((𝑥𝑆𝑦𝑆) → 𝑦𝑆)
3029adantl 473 . . . . . . . 8 ((((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦𝑆)
3130, 27eleqtrd 2829 . . . . . . 7 ((((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → 𝑦 ∈ (Base‘𝐻))
32 eqid 2748 . . . . . . . 8 (Base‘𝐻) = (Base‘𝐻)
33 eqid 2748 . . . . . . . 8 (+g𝐻) = (+g𝐻)
3432, 33mgmcl 17417 . . . . . . 7 ((𝐻 ∈ Mgm ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻))
3525, 28, 31, 34syl3anc 1463 . . . . . 6 ((((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝐻)𝑦) ∈ (Base‘𝐻))
3612ad2antlr 765 . . . . . . . 8 (((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) → 𝑆 ∈ V)
3736, 14syl 17 . . . . . . 7 (((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) → (+g𝑀) = (+g𝐻))
3837oveqdr 6825 . . . . . 6 ((((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝑀)𝑦) = (𝑥(+g𝐻)𝑦))
3935, 38, 273eltr4d 2842 . . . . 5 ((((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥(+g𝑀)𝑦) ∈ 𝑆)
4039ralrimivva 3097 . . . 4 (((𝑀 ∈ Mgm ∧ 𝑆𝐵) ∧ 𝐻 ∈ Mgm) → ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)
4124, 40impbida 913 . . 3 ((𝑀 ∈ Mgm ∧ 𝑆𝐵) → (∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆𝐻 ∈ Mgm))
4241pm5.32da 676 . 2 (𝑀 ∈ Mgm → ((𝑆𝐵 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆) ↔ (𝑆𝐵𝐻 ∈ Mgm)))
433, 42bitrd 268 1 (𝑀 ∈ Mgm → (𝑆 ∈ (SubMgm‘𝑀) ↔ (𝑆𝐵𝐻 ∈ Mgm)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1620  wcel 2127  wral 3038  Vcvv 3328  wss 3703  cfv 6037  (class class class)co 6801  Basecbs 16030  s cress 16031  +gcplusg 16114  Mgmcmgm 17412  SubMgmcsubmgm 42257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-er 7899  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-nn 11184  df-2 11242  df-ndx 16033  df-slot 16034  df-base 16036  df-sets 16037  df-ress 16038  df-plusg 16127  df-mgm 17414  df-submgm 42259
This theorem is referenced by:  submgmss  42271  submgmid  42272  submgmmgm  42274  subsubmgm  42276
  Copyright terms: Public domain W3C validator