![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > issubc2 | Structured version Visualization version GIF version |
Description: Elementhood in the set of subcategories. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
issubc.h | ⊢ 𝐻 = (Homf ‘𝐶) |
issubc.i | ⊢ 1 = (Id‘𝐶) |
issubc.o | ⊢ · = (comp‘𝐶) |
issubc.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
issubc2.a | ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) |
Ref | Expression |
---|---|
issubc2 | ⊢ (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubc.h | . 2 ⊢ 𝐻 = (Homf ‘𝐶) | |
2 | issubc.i | . 2 ⊢ 1 = (Id‘𝐶) | |
3 | issubc.o | . 2 ⊢ · = (comp‘𝐶) | |
4 | issubc.c | . 2 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | issubc2.a | . . . . 5 ⊢ (𝜑 → 𝐽 Fn (𝑆 × 𝑆)) | |
6 | fndm 6028 | . . . . 5 ⊢ (𝐽 Fn (𝑆 × 𝑆) → dom 𝐽 = (𝑆 × 𝑆)) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → dom 𝐽 = (𝑆 × 𝑆)) |
8 | 7 | dmeqd 5358 | . . 3 ⊢ (𝜑 → dom dom 𝐽 = dom (𝑆 × 𝑆)) |
9 | dmxpid 5377 | . . 3 ⊢ dom (𝑆 × 𝑆) = 𝑆 | |
10 | 8, 9 | syl6req 2702 | . 2 ⊢ (𝜑 → 𝑆 = dom dom 𝐽) |
11 | 1, 2, 3, 4, 10 | issubc 16542 | 1 ⊢ (𝜑 → (𝐽 ∈ (Subcat‘𝐶) ↔ (𝐽 ⊆cat 𝐻 ∧ ∀𝑥 ∈ 𝑆 (( 1 ‘𝑥) ∈ (𝑥𝐽𝑥) ∧ ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑓 ∈ (𝑥𝐽𝑦)∀𝑔 ∈ (𝑦𝐽𝑧)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐽𝑧))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 〈cop 4216 class class class wbr 4685 × cxp 5141 dom cdm 5143 Fn wfn 5921 ‘cfv 5926 (class class class)co 6690 compcco 16000 Catccat 16372 Idccid 16373 Homf chomf 16374 ⊆cat cssc 16514 Subcatcsubc 16516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-pm 7902 df-ixp 7951 df-ssc 16517 df-subc 16519 |
This theorem is referenced by: 0subcat 16545 catsubcat 16546 subcidcl 16551 subccocl 16552 issubc3 16556 fullsubc 16557 rnghmsubcsetc 42302 rhmsubcsetc 42348 rhmsubcrngc 42354 srhmsubc 42401 rhmsubc 42415 srhmsubcALTV 42419 rhmsubcALTV 42433 |
Copyright terms: Public domain | W3C validator |