MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issref Structured version   Visualization version   GIF version

Theorem issref 5650
Description: Two ways to state that a relation is reflexive. (Contributed by FL, 15-Jan-2012.) (Revised by NM, 30-Mar-2016.)
Assertion
Ref Expression
issref (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem issref
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ral 3065 . 2 (∀𝑥𝐴 𝑥𝑅𝑥 ↔ ∀𝑥(𝑥𝐴𝑥𝑅𝑥))
2 vex 3352 . . . . 5 𝑥 ∈ V
3 opelresi 5549 . . . . 5 (𝑥 ∈ V → (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) ↔ 𝑥𝐴))
42, 3ax-mp 5 . . . 4 (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) ↔ 𝑥𝐴)
5 df-br 4785 . . . . 5 (𝑥𝑅𝑥 ↔ ⟨𝑥, 𝑥⟩ ∈ 𝑅)
65bicomi 214 . . . 4 (⟨𝑥, 𝑥⟩ ∈ 𝑅𝑥𝑅𝑥)
74, 6imbi12i 339 . . 3 ((⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) ↔ (𝑥𝐴𝑥𝑅𝑥))
87albii 1894 . 2 (∀𝑥(⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) ↔ ∀𝑥(𝑥𝐴𝑥𝑅𝑥))
9 ralidm 4214 . . . . . 6 (∀𝑥 ∈ V ∀𝑥 ∈ V (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) ↔ ∀𝑥 ∈ V (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅))
10 ralv 3368 . . . . . 6 (∀𝑥 ∈ V (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) ↔ ∀𝑥(⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅))
119, 10bitri 264 . . . . 5 (∀𝑥 ∈ V ∀𝑥 ∈ V (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) ↔ ∀𝑥(⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅))
12 df-ral 3065 . . . . . . . . 9 (∀𝑥 ∈ V (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) ↔ ∀𝑥(𝑥 ∈ V → (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅)))
13 pm2.27 42 . . . . . . . . . . . 12 (𝑥 ∈ V → ((𝑥 ∈ V → (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅)) → (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅)))
14 opelresg 5540 . . . . . . . . . . . . . . 15 (𝑧 ∈ V → (⟨𝑥, 𝑧⟩ ∈ ( I ↾ 𝐴) ↔ (⟨𝑥, 𝑧⟩ ∈ I ∧ 𝑥𝐴)))
15 df-br 4785 . . . . . . . . . . . . . . . . 17 (𝑥 I 𝑧 ↔ ⟨𝑥, 𝑧⟩ ∈ I )
16 vex 3352 . . . . . . . . . . . . . . . . . . 19 𝑧 ∈ V
1716ideq 5413 . . . . . . . . . . . . . . . . . 18 (𝑥 I 𝑧𝑥 = 𝑧)
18 opelresi 5549 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐴 → (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) ↔ 𝑥𝐴))
19 pm2.27 42 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ((⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → ⟨𝑥, 𝑥⟩ ∈ 𝑅))
20 opeq2 4538 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝑧 → ⟨𝑥, 𝑥⟩ = ⟨𝑥, 𝑧⟩)
2120eleq1d 2834 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → (⟨𝑥, 𝑥⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑧⟩ ∈ 𝑅))
2221biimpcd 239 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝑥, 𝑥⟩ ∈ 𝑅 → (𝑥 = 𝑧 → ⟨𝑥, 𝑧⟩ ∈ 𝑅))
2319, 22syl6 35 . . . . . . . . . . . . . . . . . . . . 21 (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ((⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → (𝑥 = 𝑧 → ⟨𝑥, 𝑧⟩ ∈ 𝑅)))
2418, 23syl6bir 244 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐴 → (𝑥𝐴 → ((⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → (𝑥 = 𝑧 → ⟨𝑥, 𝑧⟩ ∈ 𝑅))))
2524pm2.43i 52 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴 → ((⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → (𝑥 = 𝑧 → ⟨𝑥, 𝑧⟩ ∈ 𝑅)))
2625com3r 87 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (𝑥𝐴 → ((⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅)))
2717, 26sylbi 207 . . . . . . . . . . . . . . . . 17 (𝑥 I 𝑧 → (𝑥𝐴 → ((⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅)))
2815, 27sylbir 225 . . . . . . . . . . . . . . . 16 (⟨𝑥, 𝑧⟩ ∈ I → (𝑥𝐴 → ((⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅)))
2928imp 393 . . . . . . . . . . . . . . 15 ((⟨𝑥, 𝑧⟩ ∈ I ∧ 𝑥𝐴) → ((⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅))
3014, 29syl6bi 243 . . . . . . . . . . . . . 14 (𝑧 ∈ V → (⟨𝑥, 𝑧⟩ ∈ ( I ↾ 𝐴) → ((⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → ⟨𝑥, 𝑧⟩ ∈ 𝑅)))
3130com3r 87 . . . . . . . . . . . . 13 ((⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → (𝑧 ∈ V → (⟨𝑥, 𝑧⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑧⟩ ∈ 𝑅)))
3231ralrimiv 3113 . . . . . . . . . . . 12 ((⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → ∀𝑧 ∈ V (⟨𝑥, 𝑧⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑧⟩ ∈ 𝑅))
3313, 32syl6 35 . . . . . . . . . . 11 (𝑥 ∈ V → ((𝑥 ∈ V → (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅)) → ∀𝑧 ∈ V (⟨𝑥, 𝑧⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑧⟩ ∈ 𝑅)))
342, 33ax-mp 5 . . . . . . . . . 10 ((𝑥 ∈ V → (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅)) → ∀𝑧 ∈ V (⟨𝑥, 𝑧⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑧⟩ ∈ 𝑅))
3534sps 2208 . . . . . . . . 9 (∀𝑥(𝑥 ∈ V → (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅)) → ∀𝑧 ∈ V (⟨𝑥, 𝑧⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑧⟩ ∈ 𝑅))
3612, 35sylbi 207 . . . . . . . 8 (∀𝑥 ∈ V (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → ∀𝑧 ∈ V (⟨𝑥, 𝑧⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑧⟩ ∈ 𝑅))
3736ralimi 3100 . . . . . . 7 (∀𝑥 ∈ V ∀𝑥 ∈ V (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → ∀𝑥 ∈ V ∀𝑧 ∈ V (⟨𝑥, 𝑧⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑧⟩ ∈ 𝑅))
38 eleq1 2837 . . . . . . . . 9 (𝑦 = ⟨𝑥, 𝑧⟩ → (𝑦 ∈ ( I ↾ 𝐴) ↔ ⟨𝑥, 𝑧⟩ ∈ ( I ↾ 𝐴)))
39 eleq1 2837 . . . . . . . . 9 (𝑦 = ⟨𝑥, 𝑧⟩ → (𝑦𝑅 ↔ ⟨𝑥, 𝑧⟩ ∈ 𝑅))
4038, 39imbi12d 333 . . . . . . . 8 (𝑦 = ⟨𝑥, 𝑧⟩ → ((𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅) ↔ (⟨𝑥, 𝑧⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑧⟩ ∈ 𝑅)))
4140ralxp 5402 . . . . . . 7 (∀𝑦 ∈ (V × V)(𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅) ↔ ∀𝑥 ∈ V ∀𝑧 ∈ V (⟨𝑥, 𝑧⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑧⟩ ∈ 𝑅))
4237, 41sylibr 224 . . . . . 6 (∀𝑥 ∈ V ∀𝑥 ∈ V (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → ∀𝑦 ∈ (V × V)(𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅))
43 df-ral 3065 . . . . . . 7 (∀𝑦 ∈ (V × V)(𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅) ↔ ∀𝑦(𝑦 ∈ (V × V) → (𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅)))
44 relres 5567 . . . . . . . . . . . 12 Rel ( I ↾ 𝐴)
45 df-rel 5256 . . . . . . . . . . . 12 (Rel ( I ↾ 𝐴) ↔ ( I ↾ 𝐴) ⊆ (V × V))
4644, 45mpbi 220 . . . . . . . . . . 11 ( I ↾ 𝐴) ⊆ (V × V)
4746sseli 3746 . . . . . . . . . 10 (𝑦 ∈ ( I ↾ 𝐴) → 𝑦 ∈ (V × V))
4847ancri 531 . . . . . . . . 9 (𝑦 ∈ ( I ↾ 𝐴) → (𝑦 ∈ (V × V) ∧ 𝑦 ∈ ( I ↾ 𝐴)))
49 pm3.31 436 . . . . . . . . 9 ((𝑦 ∈ (V × V) → (𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅)) → ((𝑦 ∈ (V × V) ∧ 𝑦 ∈ ( I ↾ 𝐴)) → 𝑦𝑅))
5048, 49syl5 34 . . . . . . . 8 ((𝑦 ∈ (V × V) → (𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅)) → (𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅))
5150alimi 1886 . . . . . . 7 (∀𝑦(𝑦 ∈ (V × V) → (𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅)) → ∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅))
5243, 51sylbi 207 . . . . . 6 (∀𝑦 ∈ (V × V)(𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅) → ∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅))
5342, 52syl 17 . . . . 5 (∀𝑥 ∈ V ∀𝑥 ∈ V (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → ∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅))
5411, 53sylbir 225 . . . 4 (∀𝑥(⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → ∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅))
55 dfss2 3738 . . . 4 (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑦(𝑦 ∈ ( I ↾ 𝐴) → 𝑦𝑅))
5654, 55sylibr 224 . . 3 (∀𝑥(⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) → ( I ↾ 𝐴) ⊆ 𝑅)
57 ssel 3744 . . . 4 (( I ↾ 𝐴) ⊆ 𝑅 → (⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅))
5857alrimiv 2006 . . 3 (( I ↾ 𝐴) ⊆ 𝑅 → ∀𝑥(⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅))
5956, 58impbii 199 . 2 (∀𝑥(⟨𝑥, 𝑥⟩ ∈ ( I ↾ 𝐴) → ⟨𝑥, 𝑥⟩ ∈ 𝑅) ↔ ( I ↾ 𝐴) ⊆ 𝑅)
601, 8, 593bitr2ri 289 1 (( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wal 1628   = wceq 1630  wcel 2144  wral 3060  Vcvv 3349  wss 3721  cop 4320   class class class wbr 4784   I cid 5156   × cxp 5247  cres 5251  Rel wrel 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-iun 4654  df-br 4785  df-opab 4845  df-id 5157  df-xp 5255  df-rel 5256  df-res 5261
This theorem is referenced by:  idinxpssinxp2  34425  idinxpssinxp3  34426  symrefref3  34645  refsymrels3  34647  elrefsymrels3  34651
  Copyright terms: Public domain W3C validator