![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > issqf | Structured version Visualization version GIF version |
Description: Two ways to say that a number is squarefree. (Contributed by Mario Carneiro, 3-Oct-2014.) |
Ref | Expression |
---|---|
issqf | ⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnsqf 25082 | . . 3 ⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) = 0 ↔ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)) | |
2 | 1 | necon3abid 2969 | . 2 ⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) ≠ 0 ↔ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴)) |
3 | ralnex 3131 | . . 3 ⊢ (∀𝑝 ∈ ℙ ¬ (𝑝↑2) ∥ 𝐴 ↔ ¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴) | |
4 | 1nn0 11521 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
5 | pccl 15777 | . . . . . . . 8 ⊢ ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℕ) → (𝑝 pCnt 𝐴) ∈ ℕ0) | |
6 | 5 | ancoms 468 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℕ0) |
7 | nn0ltp1le 11648 | . . . . . . 7 ⊢ ((1 ∈ ℕ0 ∧ (𝑝 pCnt 𝐴) ∈ ℕ0) → (1 < (𝑝 pCnt 𝐴) ↔ (1 + 1) ≤ (𝑝 pCnt 𝐴))) | |
8 | 4, 6, 7 | sylancr 698 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (1 < (𝑝 pCnt 𝐴) ↔ (1 + 1) ≤ (𝑝 pCnt 𝐴))) |
9 | 1re 10252 | . . . . . . 7 ⊢ 1 ∈ ℝ | |
10 | 6 | nn0red 11565 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝 pCnt 𝐴) ∈ ℝ) |
11 | ltnle 10330 | . . . . . . 7 ⊢ ((1 ∈ ℝ ∧ (𝑝 pCnt 𝐴) ∈ ℝ) → (1 < (𝑝 pCnt 𝐴) ↔ ¬ (𝑝 pCnt 𝐴) ≤ 1)) | |
12 | 9, 10, 11 | sylancr 698 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (1 < (𝑝 pCnt 𝐴) ↔ ¬ (𝑝 pCnt 𝐴) ≤ 1)) |
13 | df-2 11292 | . . . . . . . 8 ⊢ 2 = (1 + 1) | |
14 | 13 | breq1i 4812 | . . . . . . 7 ⊢ (2 ≤ (𝑝 pCnt 𝐴) ↔ (1 + 1) ≤ (𝑝 pCnt 𝐴)) |
15 | id 22 | . . . . . . . 8 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℙ) | |
16 | nnz 11612 | . . . . . . . 8 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℤ) | |
17 | 2nn0 11522 | . . . . . . . . 9 ⊢ 2 ∈ ℕ0 | |
18 | pcdvdsb 15796 | . . . . . . . . 9 ⊢ ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 2 ∈ ℕ0) → (2 ≤ (𝑝 pCnt 𝐴) ↔ (𝑝↑2) ∥ 𝐴)) | |
19 | 17, 18 | mp3an3 1562 | . . . . . . . 8 ⊢ ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (2 ≤ (𝑝 pCnt 𝐴) ↔ (𝑝↑2) ∥ 𝐴)) |
20 | 15, 16, 19 | syl2anr 496 | . . . . . . 7 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (2 ≤ (𝑝 pCnt 𝐴) ↔ (𝑝↑2) ∥ 𝐴)) |
21 | 14, 20 | syl5bbr 274 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → ((1 + 1) ≤ (𝑝 pCnt 𝐴) ↔ (𝑝↑2) ∥ 𝐴)) |
22 | 8, 12, 21 | 3bitr3d 298 | . . . . 5 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (¬ (𝑝 pCnt 𝐴) ≤ 1 ↔ (𝑝↑2) ∥ 𝐴)) |
23 | 22 | con1bid 344 | . . . 4 ⊢ ((𝐴 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (¬ (𝑝↑2) ∥ 𝐴 ↔ (𝑝 pCnt 𝐴) ≤ 1)) |
24 | 23 | ralbidva 3124 | . . 3 ⊢ (𝐴 ∈ ℕ → (∀𝑝 ∈ ℙ ¬ (𝑝↑2) ∥ 𝐴 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1)) |
25 | 3, 24 | syl5bbr 274 | . 2 ⊢ (𝐴 ∈ ℕ → (¬ ∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1)) |
26 | 2, 25 | bitrd 268 | 1 ⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) ≠ 0 ↔ ∀𝑝 ∈ ℙ (𝑝 pCnt 𝐴) ≤ 1)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2140 ≠ wne 2933 ∀wral 3051 ∃wrex 3052 class class class wbr 4805 ‘cfv 6050 (class class class)co 6815 ℝcr 10148 0cc0 10149 1c1 10150 + caddc 10152 < clt 10287 ≤ cle 10288 ℕcn 11233 2c2 11283 ℕ0cn0 11505 ℤcz 11590 ↑cexp 13075 ∥ cdvds 15203 ℙcprime 15608 pCnt cpc 15764 μcmu 25042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 ax-pre-sup 10227 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-2o 7732 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-sup 8516 df-inf 8517 df-card 8976 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-div 10898 df-nn 11234 df-2 11292 df-3 11293 df-n0 11506 df-z 11591 df-uz 11901 df-q 12003 df-rp 12047 df-fz 12541 df-fl 12808 df-mod 12884 df-seq 13017 df-exp 13076 df-hash 13333 df-cj 14059 df-re 14060 df-im 14061 df-sqrt 14195 df-abs 14196 df-dvds 15204 df-gcd 15440 df-prm 15609 df-pc 15765 df-mu 25048 |
This theorem is referenced by: sqfpc 25084 mumullem2 25127 sqff1o 25129 |
Copyright terms: Public domain | W3C validator |