Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmgrpOLD Structured version   Visualization version   GIF version

Theorem issmgrpOLD 33994
Description: Obsolete version of issgrp 17493 as of 3-Feb-2020. The predicate "is a semi-group". (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
issmgrpOLD.1 𝑋 = dom dom 𝐺
Assertion
Ref Expression
issmgrpOLD (𝐺𝐴 → (𝐺 ∈ SemiGrp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))))
Distinct variable groups:   𝑥,𝐺,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)

Proof of Theorem issmgrpOLD
StepHypRef Expression
1 df-sgrOLD 33992 . . 3 SemiGrp = (Magma ∩ Ass)
21eleq2i 2842 . 2 (𝐺 ∈ SemiGrp ↔ 𝐺 ∈ (Magma ∩ Ass))
3 elin 3947 . . 3 (𝐺 ∈ (Magma ∩ Ass) ↔ (𝐺 ∈ Magma ∧ 𝐺 ∈ Ass))
4 issmgrpOLD.1 . . . . 5 𝑋 = dom dom 𝐺
54ismgmOLD 33981 . . . 4 (𝐺𝐴 → (𝐺 ∈ Magma ↔ 𝐺:(𝑋 × 𝑋)⟶𝑋))
64isass 33977 . . . 4 (𝐺𝐴 → (𝐺 ∈ Ass ↔ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))
75, 6anbi12d 616 . . 3 (𝐺𝐴 → ((𝐺 ∈ Magma ∧ 𝐺 ∈ Ass) ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))))
83, 7syl5bb 272 . 2 (𝐺𝐴 → (𝐺 ∈ (Magma ∩ Ass) ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))))
92, 8syl5bb 272 1 (𝐺𝐴 → (𝐺 ∈ SemiGrp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥𝑋𝑦𝑋𝑧𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061  cin 3722   × cxp 5247  dom cdm 5249  wf 6027  (class class class)co 6793  Asscass 33973  Magmacmagm 33979  SemiGrpcsem 33991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-fv 6039  df-ov 6796  df-ass 33974  df-mgmOLD 33980  df-sgrOLD 33992
This theorem is referenced by:  smgrpmgm  33995  smgrpassOLD  33996  ismndo1  34004
  Copyright terms: Public domain W3C validator