Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmfle2d Structured version   Visualization version   GIF version

Theorem issmfle2d 41532
Description: A sufficient condition for "𝐹 being a measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
issmfle2d.a 𝑎𝜑
issmfle2d.s (𝜑𝑆 ∈ SAlg)
issmfle2d.d (𝜑𝐷 𝑆)
issmfle2d.f (𝜑𝐹:𝐷⟶ℝ)
issmfle2d.l ((𝜑𝑎 ∈ ℝ) → (𝐹 “ (-∞(,]𝑎)) ∈ (𝑆t 𝐷))
Assertion
Ref Expression
issmfle2d (𝜑𝐹 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐹,𝑎   𝑆,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝐷(𝑎)

Proof of Theorem issmfle2d
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 issmfle2d.a . 2 𝑎𝜑
2 issmfle2d.s . 2 (𝜑𝑆 ∈ SAlg)
3 issmfle2d.d . 2 (𝜑𝐷 𝑆)
4 issmfle2d.f . 2 (𝜑𝐹:𝐷⟶ℝ)
54adantr 466 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝐹:𝐷⟶ℝ)
6 rexr 10291 . . . . 5 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*)
76adantl 467 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*)
85, 7preimaiocmnf 40303 . . 3 ((𝜑𝑎 ∈ ℝ) → (𝐹 “ (-∞(,]𝑎)) = {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎})
9 issmfle2d.l . . 3 ((𝜑𝑎 ∈ ℝ) → (𝐹 “ (-∞(,]𝑎)) ∈ (𝑆t 𝐷))
108, 9eqeltrrd 2851 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) ≤ 𝑎} ∈ (𝑆t 𝐷))
111, 2, 3, 4, 10issmfled 41483 1 (𝜑𝐹 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wnf 1856  wcel 2145  {crab 3065  wss 3723   cuni 4575   class class class wbr 4787  ccnv 5249  cima 5253  wf 6026  cfv 6030  (class class class)co 6796  cr 10141  -∞cmnf 10278  *cxr 10279  cle 10281  (,]cioc 12381  t crest 16289  SAlgcsalg 41042  SMblFncsmblfn 41426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cc 9463  ax-ac2 9491  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-map 8015  df-pm 8016  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8508  df-inf 8509  df-card 8969  df-acn 8972  df-ac 9143  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-n0 11500  df-z 11585  df-uz 11894  df-q 11997  df-rp 12036  df-ioo 12384  df-ioc 12385  df-ico 12386  df-fl 12801  df-rest 16291  df-salg 41043  df-smblfn 41427
This theorem is referenced by:  smfsuplem3  41536
  Copyright terms: Public domain W3C validator