![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > issmfle2d | Structured version Visualization version GIF version |
Description: A sufficient condition for "𝐹 being a measurable function w.r.t. to the sigma-algebra 𝑆". (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
issmfle2d.a | ⊢ Ⅎ𝑎𝜑 |
issmfle2d.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
issmfle2d.d | ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
issmfle2d.f | ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
issmfle2d.l | ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡𝐹 “ (-∞(,]𝑎)) ∈ (𝑆 ↾t 𝐷)) |
Ref | Expression |
---|---|
issmfle2d | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issmfle2d.a | . 2 ⊢ Ⅎ𝑎𝜑 | |
2 | issmfle2d.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
3 | issmfle2d.d | . 2 ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) | |
4 | issmfle2d.f | . 2 ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) | |
5 | 4 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐹:𝐷⟶ℝ) |
6 | rexr 10291 | . . . . 5 ⊢ (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*) | |
7 | 6 | adantl 467 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*) |
8 | 5, 7 | preimaiocmnf 40303 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡𝐹 “ (-∞(,]𝑎)) = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≤ 𝑎}) |
9 | issmfle2d.l | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡𝐹 “ (-∞(,]𝑎)) ∈ (𝑆 ↾t 𝐷)) | |
10 | 8, 9 | eqeltrrd 2851 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≤ 𝑎} ∈ (𝑆 ↾t 𝐷)) |
11 | 1, 2, 3, 4, 10 | issmfled 41483 | 1 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 Ⅎwnf 1856 ∈ wcel 2145 {crab 3065 ⊆ wss 3723 ∪ cuni 4575 class class class wbr 4787 ◡ccnv 5249 “ cima 5253 ⟶wf 6026 ‘cfv 6030 (class class class)co 6796 ℝcr 10141 -∞cmnf 10278 ℝ*cxr 10279 ≤ cle 10281 (,]cioc 12381 ↾t crest 16289 SAlgcsalg 41042 SMblFncsmblfn 41426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-inf2 8706 ax-cc 9463 ax-ac2 9491 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-pre-sup 10220 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-iin 4658 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-se 5210 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-isom 6039 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7900 df-map 8015 df-pm 8016 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-sup 8508 df-inf 8509 df-card 8969 df-acn 8972 df-ac 9143 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-n0 11500 df-z 11585 df-uz 11894 df-q 11997 df-rp 12036 df-ioo 12384 df-ioc 12385 df-ico 12386 df-fl 12801 df-rest 16291 df-salg 41043 df-smblfn 41427 |
This theorem is referenced by: smfsuplem3 41536 |
Copyright terms: Public domain | W3C validator |