![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > issmf | Structured version Visualization version GIF version |
Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (i) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
issmf.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
issmf.d | ⊢ 𝐷 = dom 𝐹 |
Ref | Expression |
---|---|
issmf | ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issmf.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
2 | issmf.d | . . 3 ⊢ 𝐷 = dom 𝐹 | |
3 | 1, 2 | issmflem 41456 | . 2 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑏} ∈ (𝑆 ↾t 𝐷)))) |
4 | breq2 4790 | . . . . . . . 8 ⊢ (𝑏 = 𝑎 → ((𝐹‘𝑦) < 𝑏 ↔ (𝐹‘𝑦) < 𝑎)) | |
5 | 4 | rabbidv 3339 | . . . . . . 7 ⊢ (𝑏 = 𝑎 → {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑏} = {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑎}) |
6 | 5 | eleq1d 2835 | . . . . . 6 ⊢ (𝑏 = 𝑎 → ({𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑏} ∈ (𝑆 ↾t 𝐷) ↔ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑎} ∈ (𝑆 ↾t 𝐷))) |
7 | fveq2 6332 | . . . . . . . . . 10 ⊢ (𝑦 = 𝑥 → (𝐹‘𝑦) = (𝐹‘𝑥)) | |
8 | 7 | breq1d 4796 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 → ((𝐹‘𝑦) < 𝑎 ↔ (𝐹‘𝑥) < 𝑎)) |
9 | 8 | cbvrabv 3349 | . . . . . . . 8 ⊢ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑎} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} |
10 | 9 | eleq1i 2841 | . . . . . . 7 ⊢ ({𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑎} ∈ (𝑆 ↾t 𝐷) ↔ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)) |
11 | 10 | a1i 11 | . . . . . 6 ⊢ (𝑏 = 𝑎 → ({𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑎} ∈ (𝑆 ↾t 𝐷) ↔ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) |
12 | 6, 11 | bitrd 268 | . . . . 5 ⊢ (𝑏 = 𝑎 → ({𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑏} ∈ (𝑆 ↾t 𝐷) ↔ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) |
13 | 12 | cbvralv 3320 | . . . 4 ⊢ (∀𝑏 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑏} ∈ (𝑆 ↾t 𝐷) ↔ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)) |
14 | 13 | 3anbi3i 1162 | . . 3 ⊢ ((𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑏} ∈ (𝑆 ↾t 𝐷)) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) |
15 | 14 | a1i 11 | . 2 ⊢ (𝜑 → ((𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑏 ∈ ℝ {𝑦 ∈ 𝐷 ∣ (𝐹‘𝑦) < 𝑏} ∈ (𝑆 ↾t 𝐷)) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) |
16 | 3, 15 | bitrd 268 | 1 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ∀wral 3061 {crab 3065 ⊆ wss 3723 ∪ cuni 4574 class class class wbr 4786 dom cdm 5249 ⟶wf 6027 ‘cfv 6031 (class class class)co 6793 ℝcr 10137 < clt 10276 ↾t crest 16289 SAlgcsalg 41045 SMblFncsmblfn 41429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-pre-lttri 10212 ax-pre-lttrn 10213 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-1st 7315 df-2nd 7316 df-er 7896 df-pm 8012 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-ioo 12384 df-ico 12386 df-smblfn 41430 |
This theorem is referenced by: smfpreimalt 41460 smff 41461 smfdmss 41462 issmff 41463 issmfd 41464 issmflelem 41473 issmfgtlem 41484 issmfgelem 41497 |
Copyright terms: Public domain | W3C validator |