![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > issh2 | Structured version Visualization version GIF version |
Description: Subspace 𝐻 of a Hilbert space. A subspace is a subset of Hilbert space which contains the zero vector and is closed under vector addition and scalar multiplication. Definition of [Beran] p. 95. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
issh2 | ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issh 28345 | . 2 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻))) | |
2 | ax-hfvadd 28137 | . . . . . . 7 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
3 | ffun 6197 | . . . . . . 7 ⊢ ( +ℎ :( ℋ × ℋ)⟶ ℋ → Fun +ℎ ) | |
4 | 2, 3 | ax-mp 5 | . . . . . 6 ⊢ Fun +ℎ |
5 | xpss12 5269 | . . . . . . . 8 ⊢ ((𝐻 ⊆ ℋ ∧ 𝐻 ⊆ ℋ) → (𝐻 × 𝐻) ⊆ ( ℋ × ℋ)) | |
6 | 5 | anidms 680 | . . . . . . 7 ⊢ (𝐻 ⊆ ℋ → (𝐻 × 𝐻) ⊆ ( ℋ × ℋ)) |
7 | 2 | fdmi 6201 | . . . . . . 7 ⊢ dom +ℎ = ( ℋ × ℋ) |
8 | 6, 7 | syl6sseqr 3781 | . . . . . 6 ⊢ (𝐻 ⊆ ℋ → (𝐻 × 𝐻) ⊆ dom +ℎ ) |
9 | funimassov 6964 | . . . . . 6 ⊢ ((Fun +ℎ ∧ (𝐻 × 𝐻) ⊆ dom +ℎ ) → (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻)) | |
10 | 4, 8, 9 | sylancr 698 | . . . . 5 ⊢ (𝐻 ⊆ ℋ → (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻)) |
11 | ax-hfvmul 28142 | . . . . . . 7 ⊢ ·ℎ :(ℂ × ℋ)⟶ ℋ | |
12 | ffun 6197 | . . . . . . 7 ⊢ ( ·ℎ :(ℂ × ℋ)⟶ ℋ → Fun ·ℎ ) | |
13 | 11, 12 | ax-mp 5 | . . . . . 6 ⊢ Fun ·ℎ |
14 | xpss2 5273 | . . . . . . 7 ⊢ (𝐻 ⊆ ℋ → (ℂ × 𝐻) ⊆ (ℂ × ℋ)) | |
15 | 11 | fdmi 6201 | . . . . . . 7 ⊢ dom ·ℎ = (ℂ × ℋ) |
16 | 14, 15 | syl6sseqr 3781 | . . . . . 6 ⊢ (𝐻 ⊆ ℋ → (ℂ × 𝐻) ⊆ dom ·ℎ ) |
17 | funimassov 6964 | . . . . . 6 ⊢ ((Fun ·ℎ ∧ (ℂ × 𝐻) ⊆ dom ·ℎ ) → (( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻)) | |
18 | 13, 16, 17 | sylancr 698 | . . . . 5 ⊢ (𝐻 ⊆ ℋ → (( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻 ↔ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻)) |
19 | 10, 18 | anbi12d 749 | . . . 4 ⊢ (𝐻 ⊆ ℋ → ((( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻) ↔ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) |
20 | 19 | adantr 472 | . . 3 ⊢ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) → ((( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻) ↔ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) |
21 | 20 | pm5.32i 672 | . 2 ⊢ (((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻)) ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) |
22 | 1, 21 | bitri 264 | 1 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∈ wcel 2127 ∀wral 3038 ⊆ wss 3703 × cxp 5252 dom cdm 5254 “ cima 5257 Fun wfun 6031 ⟶wf 6033 (class class class)co 6801 ℂcc 10097 ℋchil 28056 +ℎ cva 28057 ·ℎ csm 28058 0ℎc0v 28061 Sℋ csh 28065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pr 5043 ax-hilex 28136 ax-hfvadd 28137 ax-hfvmul 28142 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ral 3043 df-rex 3044 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-id 5162 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-fv 6045 df-ov 6804 df-sh 28344 |
This theorem is referenced by: shaddcl 28354 shmulcl 28355 issh3 28356 helch 28380 hsn0elch 28385 hhshsslem2 28405 ocsh 28422 shscli 28456 shintcli 28468 imaelshi 29197 |
Copyright terms: Public domain | W3C validator |