![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > issect2 | Structured version Visualization version GIF version |
Description: Property of being a section. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
issect.b | ⊢ 𝐵 = (Base‘𝐶) |
issect.h | ⊢ 𝐻 = (Hom ‘𝐶) |
issect.o | ⊢ · = (comp‘𝐶) |
issect.i | ⊢ 1 = (Id‘𝐶) |
issect.s | ⊢ 𝑆 = (Sect‘𝐶) |
issect.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
issect.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
issect.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
issect.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
issect.g | ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑋)) |
Ref | Expression |
---|---|
issect2 | ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issect.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
2 | issect.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐻𝑋)) | |
3 | 1, 2 | jca 501 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋))) |
4 | issect.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
5 | issect.h | . . . . 5 ⊢ 𝐻 = (Hom ‘𝐶) | |
6 | issect.o | . . . . 5 ⊢ · = (comp‘𝐶) | |
7 | issect.i | . . . . 5 ⊢ 1 = (Id‘𝐶) | |
8 | issect.s | . . . . 5 ⊢ 𝑆 = (Sect‘𝐶) | |
9 | issect.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
10 | issect.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
11 | issect.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
12 | 4, 5, 6, 7, 8, 9, 10, 11 | issect 16620 | . . . 4 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋)))) |
13 | df-3an 1073 | . . . 4 ⊢ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋)) ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋))) | |
14 | 12, 13 | syl6bb 276 | . . 3 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋)))) |
15 | 14 | baibd 529 | . 2 ⊢ ((𝜑 ∧ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋))) → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋))) |
16 | 3, 15 | mpdan 667 | 1 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 〈cop 4323 class class class wbr 4787 ‘cfv 6030 (class class class)co 6796 Basecbs 16064 Hom chom 16160 compcco 16161 Catccat 16532 Idccid 16533 Sectcsect 16611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-1st 7319 df-2nd 7320 df-sect 16614 |
This theorem is referenced by: sectco 16623 dfiso3 16640 monsect 16650 sectid 16653 invcoisoid 16659 isocoinvid 16660 cicref 16668 funcsect 16739 fthsect 16792 fucsect 16839 2initoinv 16867 2termoinv 16874 catcisolem 16963 |
Copyright terms: Public domain | W3C validator |