![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isrusgr | Structured version Visualization version GIF version |
Description: The property of being a k-regular simple graph. (Contributed by Alexander van der Vekens, 7-Jul-2018.) (Revised by AV, 18-Dec-2020.) |
Ref | Expression |
---|---|
isrusgr | ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍) → (𝐺RegUSGraph𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐺RegGraph𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2837 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑔 ∈ USGraph ↔ 𝐺 ∈ USGraph)) | |
2 | 1 | adantr 466 | . . . 4 ⊢ ((𝑔 = 𝐺 ∧ 𝑘 = 𝐾) → (𝑔 ∈ USGraph ↔ 𝐺 ∈ USGraph)) |
3 | breq12 4789 | . . . 4 ⊢ ((𝑔 = 𝐺 ∧ 𝑘 = 𝐾) → (𝑔RegGraph𝑘 ↔ 𝐺RegGraph𝐾)) | |
4 | 2, 3 | anbi12d 608 | . . 3 ⊢ ((𝑔 = 𝐺 ∧ 𝑘 = 𝐾) → ((𝑔 ∈ USGraph ∧ 𝑔RegGraph𝑘) ↔ (𝐺 ∈ USGraph ∧ 𝐺RegGraph𝐾))) |
5 | df-rusgr 26688 | . . 3 ⊢ RegUSGraph = {〈𝑔, 𝑘〉 ∣ (𝑔 ∈ USGraph ∧ 𝑔RegGraph𝑘)} | |
6 | 4, 5 | brabga 5122 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍) → (𝐺RegUSGraph𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐺RegGraph𝐾))) |
7 | biidd 252 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍) → ((𝐺 ∈ USGraph ∧ 𝐺RegGraph𝐾) ↔ (𝐺 ∈ USGraph ∧ 𝐺RegGraph𝐾))) | |
8 | 6, 7 | bitrd 268 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐾 ∈ 𝑍) → (𝐺RegUSGraph𝐾 ↔ (𝐺 ∈ USGraph ∧ 𝐺RegGraph𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1630 ∈ wcel 2144 class class class wbr 4784 USGraphcusgr 26265 RegGraphcrgr 26685 RegUSGraphcrusgr 26686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-rab 3069 df-v 3351 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-br 4785 df-opab 4845 df-rusgr 26688 |
This theorem is referenced by: rusgrprop 26692 isrusgr0 26696 usgr0edg0rusgr 26705 0vtxrusgr 26707 |
Copyright terms: Public domain | W3C validator |