![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isrrvv | Structured version Visualization version GIF version |
Description: Elementhood to the set of real-valued random variables with respect to the probability 𝑃. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
Ref | Expression |
---|---|
isrrvv.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
Ref | Expression |
---|---|
isrrvv | ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrrvv.1 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
2 | 1 | rrvmbfm 30835 | . 2 ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ))) |
3 | domprobsiga 30804 | . . . 4 ⊢ (𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra) | |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → dom 𝑃 ∈ ∪ ran sigAlgebra) |
5 | brsigarn 30578 | . . . 4 ⊢ 𝔅ℝ ∈ (sigAlgebra‘ℝ) | |
6 | elrnsiga 30520 | . . . 4 ⊢ (𝔅ℝ ∈ (sigAlgebra‘ℝ) → 𝔅ℝ ∈ ∪ ran sigAlgebra) | |
7 | 5, 6 | mp1i 13 | . . 3 ⊢ (𝜑 → 𝔅ℝ ∈ ∪ ran sigAlgebra) |
8 | 4, 7 | ismbfm 30645 | . 2 ⊢ (𝜑 → (𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ) ↔ (𝑋 ∈ (∪ 𝔅ℝ ↑𝑚 ∪ dom 𝑃) ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) |
9 | unibrsiga 30580 | . . . . . 6 ⊢ ∪ 𝔅ℝ = ℝ | |
10 | 9 | oveq1i 6825 | . . . . 5 ⊢ (∪ 𝔅ℝ ↑𝑚 ∪ dom 𝑃) = (ℝ ↑𝑚 ∪ dom 𝑃) |
11 | 10 | eleq2i 2832 | . . . 4 ⊢ (𝑋 ∈ (∪ 𝔅ℝ ↑𝑚 ∪ dom 𝑃) ↔ 𝑋 ∈ (ℝ ↑𝑚 ∪ dom 𝑃)) |
12 | reex 10240 | . . . . 5 ⊢ ℝ ∈ V | |
13 | uniexg 7122 | . . . . . 6 ⊢ (dom 𝑃 ∈ ∪ ran sigAlgebra → ∪ dom 𝑃 ∈ V) | |
14 | 4, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → ∪ dom 𝑃 ∈ V) |
15 | elmapg 8039 | . . . . 5 ⊢ ((ℝ ∈ V ∧ ∪ dom 𝑃 ∈ V) → (𝑋 ∈ (ℝ ↑𝑚 ∪ dom 𝑃) ↔ 𝑋:∪ dom 𝑃⟶ℝ)) | |
16 | 12, 14, 15 | sylancr 698 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (ℝ ↑𝑚 ∪ dom 𝑃) ↔ 𝑋:∪ dom 𝑃⟶ℝ)) |
17 | 11, 16 | syl5bb 272 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (∪ 𝔅ℝ ↑𝑚 ∪ dom 𝑃) ↔ 𝑋:∪ dom 𝑃⟶ℝ)) |
18 | 17 | anbi1d 743 | . 2 ⊢ (𝜑 → ((𝑋 ∈ (∪ 𝔅ℝ ↑𝑚 ∪ dom 𝑃) ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃) ↔ (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) |
19 | 2, 8, 18 | 3bitrd 294 | 1 ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2140 ∀wral 3051 Vcvv 3341 ∪ cuni 4589 ◡ccnv 5266 dom cdm 5267 ran crn 5268 “ cima 5270 ⟶wf 6046 ‘cfv 6050 (class class class)co 6815 ↑𝑚 cmap 8026 ℝcr 10148 sigAlgebracsiga 30501 𝔅ℝcbrsiga 30575 MblFnMcmbfm 30643 Probcprb 30800 rRndVarcrrv 30833 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-pre-lttri 10223 ax-pre-lttrn 10224 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-po 5188 df-so 5189 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-1st 7335 df-2nd 7336 df-er 7914 df-map 8028 df-en 8125 df-dom 8126 df-sdom 8127 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-ioo 12393 df-topgen 16327 df-top 20922 df-bases 20973 df-esum 30421 df-siga 30502 df-sigagen 30533 df-brsiga 30576 df-meas 30590 df-mbfm 30644 df-prob 30801 df-rrv 30834 |
This theorem is referenced by: rrvvf 30837 rrvfinvima 30843 0rrv 30844 coinfliprv 30875 |
Copyright terms: Public domain | W3C validator |