Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrng Structured version   Visualization version   GIF version

Theorem isrng 42404
Description: The predicate "is a non-unital ring." (Contributed by AV, 6-Jan-2020.)
Hypotheses
Ref Expression
isrng.b 𝐵 = (Base‘𝑅)
isrng.g 𝐺 = (mulGrp‘𝑅)
isrng.p + = (+g𝑅)
isrng.t · = (.r𝑅)
Assertion
Ref Expression
isrng (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ 𝐺 ∈ SGrp ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
Distinct variable groups:   𝑥,𝐵,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥, · ,𝑦,𝑧   𝑥, + ,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧)

Proof of Theorem isrng
Dummy variables 𝑏 𝑟 𝑡 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6353 . . . . . 6 (𝑟 = 𝑅 → (mulGrp‘𝑟) = (mulGrp‘𝑅))
2 isrng.g . . . . . 6 𝐺 = (mulGrp‘𝑅)
31, 2syl6eqr 2812 . . . . 5 (𝑟 = 𝑅 → (mulGrp‘𝑟) = 𝐺)
43eleq1d 2824 . . . 4 (𝑟 = 𝑅 → ((mulGrp‘𝑟) ∈ SGrp ↔ 𝐺 ∈ SGrp))
5 fvexd 6365 . . . . 5 (𝑟 = 𝑅 → (Base‘𝑟) ∈ V)
6 fveq2 6353 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
7 isrng.b . . . . . 6 𝐵 = (Base‘𝑅)
86, 7syl6eqr 2812 . . . . 5 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
9 fvexd 6365 . . . . . 6 ((𝑟 = 𝑅𝑏 = 𝐵) → (+g𝑟) ∈ V)
10 fveq2 6353 . . . . . . . 8 (𝑟 = 𝑅 → (+g𝑟) = (+g𝑅))
1110adantr 472 . . . . . . 7 ((𝑟 = 𝑅𝑏 = 𝐵) → (+g𝑟) = (+g𝑅))
12 isrng.p . . . . . . 7 + = (+g𝑅)
1311, 12syl6eqr 2812 . . . . . 6 ((𝑟 = 𝑅𝑏 = 𝐵) → (+g𝑟) = + )
14 fvexd 6365 . . . . . . 7 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) → (.r𝑟) ∈ V)
15 fveq2 6353 . . . . . . . . . 10 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
1615adantr 472 . . . . . . . . 9 ((𝑟 = 𝑅𝑏 = 𝐵) → (.r𝑟) = (.r𝑅))
1716adantr 472 . . . . . . . 8 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) → (.r𝑟) = (.r𝑅))
18 isrng.t . . . . . . . 8 · = (.r𝑅)
1917, 18syl6eqr 2812 . . . . . . 7 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) → (.r𝑟) = · )
20 simpllr 817 . . . . . . . 8 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑏 = 𝐵)
21 simpr 479 . . . . . . . . . . . . 13 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑡 = · )
22 eqidd 2761 . . . . . . . . . . . . 13 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑥 = 𝑥)
23 oveq 6820 . . . . . . . . . . . . . 14 (𝑝 = + → (𝑦𝑝𝑧) = (𝑦 + 𝑧))
2423ad2antlr 765 . . . . . . . . . . . . 13 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (𝑦𝑝𝑧) = (𝑦 + 𝑧))
2521, 22, 24oveq123d 6835 . . . . . . . . . . . 12 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (𝑥𝑡(𝑦𝑝𝑧)) = (𝑥 · (𝑦 + 𝑧)))
26 simpr 479 . . . . . . . . . . . . . 14 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) → 𝑝 = + )
2726adantr 472 . . . . . . . . . . . . 13 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑝 = + )
28 oveq 6820 . . . . . . . . . . . . . 14 (𝑡 = · → (𝑥𝑡𝑦) = (𝑥 · 𝑦))
2928adantl 473 . . . . . . . . . . . . 13 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (𝑥𝑡𝑦) = (𝑥 · 𝑦))
30 oveq 6820 . . . . . . . . . . . . . 14 (𝑡 = · → (𝑥𝑡𝑧) = (𝑥 · 𝑧))
3130adantl 473 . . . . . . . . . . . . 13 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (𝑥𝑡𝑧) = (𝑥 · 𝑧))
3227, 29, 31oveq123d 6835 . . . . . . . . . . . 12 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
3325, 32eqeq12d 2775 . . . . . . . . . . 11 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ↔ (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))))
34 oveq 6820 . . . . . . . . . . . . . 14 (𝑝 = + → (𝑥𝑝𝑦) = (𝑥 + 𝑦))
3534ad2antlr 765 . . . . . . . . . . . . 13 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (𝑥𝑝𝑦) = (𝑥 + 𝑦))
36 eqidd 2761 . . . . . . . . . . . . 13 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → 𝑧 = 𝑧)
3721, 35, 36oveq123d 6835 . . . . . . . . . . . 12 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥 + 𝑦) · 𝑧))
38 oveq 6820 . . . . . . . . . . . . . 14 (𝑡 = · → (𝑦𝑡𝑧) = (𝑦 · 𝑧))
3938adantl 473 . . . . . . . . . . . . 13 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (𝑦𝑡𝑧) = (𝑦 · 𝑧))
4027, 31, 39oveq123d 6835 . . . . . . . . . . . 12 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧)) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))
4137, 40eqeq12d 2775 . . . . . . . . . . 11 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧)) ↔ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))
4233, 41anbi12d 749 . . . . . . . . . 10 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
4320, 42raleqbidv 3291 . . . . . . . . 9 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (∀𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
4420, 43raleqbidv 3291 . . . . . . . 8 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (∀𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
4520, 44raleqbidv 3291 . . . . . . 7 ((((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) ∧ 𝑡 = · ) → (∀𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
4614, 19, 45sbcied2 3614 . . . . . 6 (((𝑟 = 𝑅𝑏 = 𝐵) ∧ 𝑝 = + ) → ([(.r𝑟) / 𝑡]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
479, 13, 46sbcied2 3614 . . . . 5 ((𝑟 = 𝑅𝑏 = 𝐵) → ([(+g𝑟) / 𝑝][(.r𝑟) / 𝑡]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
485, 8, 47sbcied2 3614 . . . 4 (𝑟 = 𝑅 → ([(Base‘𝑟) / 𝑏][(+g𝑟) / 𝑝][(.r𝑟) / 𝑡]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ↔ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
494, 48anbi12d 749 . . 3 (𝑟 = 𝑅 → (((mulGrp‘𝑟) ∈ SGrp ∧ [(Base‘𝑟) / 𝑏][(+g𝑟) / 𝑝][(.r𝑟) / 𝑡]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧)))) ↔ (𝐺 ∈ SGrp ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))))
50 df-rng0 42403 . . 3 Rng = {𝑟 ∈ Abel ∣ ((mulGrp‘𝑟) ∈ SGrp ∧ [(Base‘𝑟) / 𝑏][(+g𝑟) / 𝑝][(.r𝑟) / 𝑡]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))))}
5149, 50elrab2 3507 . 2 (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ (𝐺 ∈ SGrp ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))))
52 3anass 1081 . 2 ((𝑅 ∈ Abel ∧ 𝐺 ∈ SGrp ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))) ↔ (𝑅 ∈ Abel ∧ (𝐺 ∈ SGrp ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))))))
5351, 52bitr4i 267 1 (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧ 𝐺 ∈ SGrp ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  Vcvv 3340  [wsbc 3576  cfv 6049  (class class class)co 6814  Basecbs 16079  +gcplusg 16163  .rcmulr 16164  SGrpcsgrp 17504  Abelcabl 18414  mulGrpcmgp 18709  Rngcrng 42402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-nul 4941
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-iota 6012  df-fv 6057  df-ov 6817  df-rng0 42403
This theorem is referenced by:  rngabl  42405  rngmgp  42406  ringrng  42407  isringrng  42409  rngdir  42410  lidlrng  42455  2zrngALT  42476  cznrng  42483
  Copyright terms: Public domain W3C validator