![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isrhm2d | Structured version Visualization version GIF version |
Description: Demonstration of ring homomorphism. (Contributed by Mario Carneiro, 13-Jun-2015.) |
Ref | Expression |
---|---|
isrhmd.b | ⊢ 𝐵 = (Base‘𝑅) |
isrhmd.o | ⊢ 1 = (1r‘𝑅) |
isrhmd.n | ⊢ 𝑁 = (1r‘𝑆) |
isrhmd.t | ⊢ · = (.r‘𝑅) |
isrhmd.u | ⊢ × = (.r‘𝑆) |
isrhmd.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
isrhmd.s | ⊢ (𝜑 → 𝑆 ∈ Ring) |
isrhmd.ho | ⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁) |
isrhmd.ht | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) |
isrhm2d.f | ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
Ref | Expression |
---|---|
isrhm2d | ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrhmd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | isrhmd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ Ring) | |
3 | 1, 2 | jca 555 | . 2 ⊢ (𝜑 → (𝑅 ∈ Ring ∧ 𝑆 ∈ Ring)) |
4 | isrhm2d.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
5 | eqid 2760 | . . . . . . 7 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
6 | 5 | ringmgp 18753 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
7 | 1, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) |
8 | eqid 2760 | . . . . . . 7 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
9 | 8 | ringmgp 18753 | . . . . . 6 ⊢ (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd) |
10 | 2, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → (mulGrp‘𝑆) ∈ Mnd) |
11 | 7, 10 | jca 555 | . . . 4 ⊢ (𝜑 → ((mulGrp‘𝑅) ∈ Mnd ∧ (mulGrp‘𝑆) ∈ Mnd)) |
12 | isrhmd.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
13 | eqid 2760 | . . . . . . 7 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
14 | 12, 13 | ghmf 17865 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:𝐵⟶(Base‘𝑆)) |
15 | 4, 14 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝑆)) |
16 | isrhmd.ht | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) | |
17 | 16 | ralrimivva 3109 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) |
18 | isrhmd.ho | . . . . . 6 ⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁) | |
19 | isrhmd.o | . . . . . . . 8 ⊢ 1 = (1r‘𝑅) | |
20 | 5, 19 | ringidval 18703 | . . . . . . 7 ⊢ 1 = (0g‘(mulGrp‘𝑅)) |
21 | 20 | fveq2i 6355 | . . . . . 6 ⊢ (𝐹‘ 1 ) = (𝐹‘(0g‘(mulGrp‘𝑅))) |
22 | isrhmd.n | . . . . . . 7 ⊢ 𝑁 = (1r‘𝑆) | |
23 | 8, 22 | ringidval 18703 | . . . . . 6 ⊢ 𝑁 = (0g‘(mulGrp‘𝑆)) |
24 | 18, 21, 23 | 3eqtr3g 2817 | . . . . 5 ⊢ (𝜑 → (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆))) |
25 | 15, 17, 24 | 3jca 1123 | . . . 4 ⊢ (𝜑 → (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦)) ∧ (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆)))) |
26 | 5, 12 | mgpbas 18695 | . . . . 5 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
27 | 8, 13 | mgpbas 18695 | . . . . 5 ⊢ (Base‘𝑆) = (Base‘(mulGrp‘𝑆)) |
28 | isrhmd.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
29 | 5, 28 | mgpplusg 18693 | . . . . 5 ⊢ · = (+g‘(mulGrp‘𝑅)) |
30 | isrhmd.u | . . . . . 6 ⊢ × = (.r‘𝑆) | |
31 | 8, 30 | mgpplusg 18693 | . . . . 5 ⊢ × = (+g‘(mulGrp‘𝑆)) |
32 | eqid 2760 | . . . . 5 ⊢ (0g‘(mulGrp‘𝑅)) = (0g‘(mulGrp‘𝑅)) | |
33 | eqid 2760 | . . . . 5 ⊢ (0g‘(mulGrp‘𝑆)) = (0g‘(mulGrp‘𝑆)) | |
34 | 26, 27, 29, 31, 32, 33 | ismhm 17538 | . . . 4 ⊢ (𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) ↔ (((mulGrp‘𝑅) ∈ Mnd ∧ (mulGrp‘𝑆) ∈ Mnd) ∧ (𝐹:𝐵⟶(Base‘𝑆) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦)) ∧ (𝐹‘(0g‘(mulGrp‘𝑅))) = (0g‘(mulGrp‘𝑆))))) |
35 | 11, 25, 34 | sylanbrc 701 | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) |
36 | 4, 35 | jca 555 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))) |
37 | 5, 8 | isrhm 18923 | . 2 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))) |
38 | 3, 36, 37 | sylanbrc 701 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ⟶wf 6045 ‘cfv 6049 (class class class)co 6813 Basecbs 16059 .rcmulr 16144 0gc0g 16302 Mndcmnd 17495 MndHom cmhm 17534 GrpHom cghm 17858 mulGrpcmgp 18689 1rcur 18701 Ringcrg 18747 RingHom crh 18914 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-er 7911 df-map 8025 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-plusg 16156 df-0g 16304 df-mhm 17536 df-ghm 17859 df-mgp 18690 df-ur 18702 df-ring 18749 df-rnghom 18917 |
This theorem is referenced by: isrhmd 18931 qusrhm 19439 asclrhm 19544 mulgrhm 20048 rhmopp 30128 |
Copyright terms: Public domain | W3C validator |