Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ispsubsp2 Structured version   Visualization version   GIF version

Theorem ispsubsp2 34551
Description: The predicate "is a projective subspace". (Contributed by NM, 13-Jan-2012.)
Hypotheses
Ref Expression
psubspset.l = (le‘𝐾)
psubspset.j = (join‘𝐾)
psubspset.a 𝐴 = (Atoms‘𝐾)
psubspset.s 𝑆 = (PSubSp‘𝐾)
Assertion
Ref Expression
ispsubsp2 (𝐾𝐷 → (𝑋𝑆 ↔ (𝑋𝐴 ∧ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))))
Distinct variable groups:   𝐴,𝑟   𝑞,𝑝,𝑟,𝐾   𝑋,𝑝,𝑞,𝑟   𝐴,𝑝,𝑞
Allowed substitution hints:   𝐷(𝑟,𝑞,𝑝)   𝑆(𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)   (𝑟,𝑞,𝑝)

Proof of Theorem ispsubsp2
StepHypRef Expression
1 psubspset.l . . 3 = (le‘𝐾)
2 psubspset.j . . 3 = (join‘𝐾)
3 psubspset.a . . 3 𝐴 = (Atoms‘𝐾)
4 psubspset.s . . 3 𝑆 = (PSubSp‘𝐾)
51, 2, 3, 4ispsubsp 34550 . 2 (𝐾𝐷 → (𝑋𝑆 ↔ (𝑋𝐴 ∧ ∀𝑞𝑋𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋))))
6 ralcom 3092 . . . . . . 7 (∀𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴𝑟𝑋 (𝑝 (𝑞 𝑟) → 𝑝𝑋))
7 r19.23v 3018 . . . . . . . 8 (∀𝑟𝑋 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
87ralbii 2976 . . . . . . 7 (∀𝑝𝐴𝑟𝑋 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
96, 8bitri 264 . . . . . 6 (∀𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
109ralbii 2976 . . . . 5 (∀𝑞𝑋𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑞𝑋𝑝𝐴 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
11 ralcom 3092 . . . . . 6 (∀𝑞𝑋𝑝𝐴 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴𝑞𝑋 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
12 r19.23v 3018 . . . . . . 7 (∀𝑞𝑋 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
1312ralbii 2976 . . . . . 6 (∀𝑝𝐴𝑞𝑋 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
1411, 13bitri 264 . . . . 5 (∀𝑞𝑋𝑝𝐴 (∃𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
1510, 14bitri 264 . . . 4 (∀𝑞𝑋𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))
1615a1i 11 . . 3 (𝐾𝐷 → (∀𝑞𝑋𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋) ↔ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋)))
1716anbi2d 739 . 2 (𝐾𝐷 → ((𝑋𝐴 ∧ ∀𝑞𝑋𝑟𝑋𝑝𝐴 (𝑝 (𝑞 𝑟) → 𝑝𝑋)) ↔ (𝑋𝐴 ∧ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))))
185, 17bitrd 268 1 (𝐾𝐷 → (𝑋𝑆 ↔ (𝑋𝐴 ∧ ∀𝑝𝐴 (∃𝑞𝑋𝑟𝑋 𝑝 (𝑞 𝑟) → 𝑝𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2908  wrex 2909  wss 3560   class class class wbr 4623  cfv 5857  (class class class)co 6615  lecple 15888  joincjn 16884  Atomscatm 34069  PSubSpcpsubsp 34301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-iota 5820  df-fun 5859  df-fv 5865  df-ov 6618  df-psubsp 34308
This theorem is referenced by:  psubspi  34552  paddclN  34647
  Copyright terms: Public domain W3C validator