MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm5 Structured version   Visualization version   GIF version

Theorem isprm5 15466
Description: One need only check prime divisors of 𝑃 up to 𝑃 in order to ensure primality. (Contributed by Mario Carneiro, 18-Feb-2014.)
Assertion
Ref Expression
isprm5 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
Distinct variable group:   𝑧,𝑃

Proof of Theorem isprm5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isprm4 15444 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃)))
2 prmuz2 15455 . . . . . . . 8 (𝑧 ∈ ℙ → 𝑧 ∈ (ℤ‘2))
32a1i 11 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → (𝑧 ∈ ℙ → 𝑧 ∈ (ℤ‘2)))
4 eluz2b2 11799 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℕ ∧ 1 < 𝑃))
54simprbi 479 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
6 eluzelre 11736 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℝ)
7 eluz2nn 11764 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℕ)
87nngt0d 11102 . . . . . . . . . . . . 13 (𝑃 ∈ (ℤ‘2) → 0 < 𝑃)
9 ltmulgt11 10921 . . . . . . . . . . . . 13 ((𝑃 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ 0 < 𝑃) → (1 < 𝑃𝑃 < (𝑃 · 𝑃)))
106, 6, 8, 9syl3anc 1366 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘2) → (1 < 𝑃𝑃 < (𝑃 · 𝑃)))
115, 10mpbid 222 . . . . . . . . . . 11 (𝑃 ∈ (ℤ‘2) → 𝑃 < (𝑃 · 𝑃))
126, 6remulcld 10108 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘2) → (𝑃 · 𝑃) ∈ ℝ)
136, 12ltnled 10222 . . . . . . . . . . 11 (𝑃 ∈ (ℤ‘2) → (𝑃 < (𝑃 · 𝑃) ↔ ¬ (𝑃 · 𝑃) ≤ 𝑃))
1411, 13mpbid 222 . . . . . . . . . 10 (𝑃 ∈ (ℤ‘2) → ¬ (𝑃 · 𝑃) ≤ 𝑃)
15 oveq12 6699 . . . . . . . . . . . . 13 ((𝑧 = 𝑃𝑧 = 𝑃) → (𝑧 · 𝑧) = (𝑃 · 𝑃))
1615anidms 678 . . . . . . . . . . . 12 (𝑧 = 𝑃 → (𝑧 · 𝑧) = (𝑃 · 𝑃))
1716breq1d 4695 . . . . . . . . . . 11 (𝑧 = 𝑃 → ((𝑧 · 𝑧) ≤ 𝑃 ↔ (𝑃 · 𝑃) ≤ 𝑃))
1817notbid 307 . . . . . . . . . 10 (𝑧 = 𝑃 → (¬ (𝑧 · 𝑧) ≤ 𝑃 ↔ ¬ (𝑃 · 𝑃) ≤ 𝑃))
1914, 18syl5ibrcom 237 . . . . . . . . 9 (𝑃 ∈ (ℤ‘2) → (𝑧 = 𝑃 → ¬ (𝑧 · 𝑧) ≤ 𝑃))
2019imim2d 57 . . . . . . . 8 (𝑃 ∈ (ℤ‘2) → ((𝑧𝑃𝑧 = 𝑃) → (𝑧𝑃 → ¬ (𝑧 · 𝑧) ≤ 𝑃)))
21 con2 130 . . . . . . . 8 ((𝑧𝑃 → ¬ (𝑧 · 𝑧) ≤ 𝑃) → ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃))
2220, 21syl6 35 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → ((𝑧𝑃𝑧 = 𝑃) → ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃)))
233, 22imim12d 81 . . . . . 6 (𝑃 ∈ (ℤ‘2) → ((𝑧 ∈ (ℤ‘2) → (𝑧𝑃𝑧 = 𝑃)) → (𝑧 ∈ ℙ → ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃))))
2423ralimdv2 2990 . . . . 5 (𝑃 ∈ (ℤ‘2) → (∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃) → ∀𝑧 ∈ ℙ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃)))
25 annim 440 . . . . . . . . 9 ((𝑧𝑃 ∧ ¬ 𝑧 = 𝑃) ↔ ¬ (𝑧𝑃𝑧 = 𝑃))
26 oveq12 6699 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑧𝑥 = 𝑧) → (𝑥 · 𝑥) = (𝑧 · 𝑧))
2726anidms 678 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → (𝑥 · 𝑥) = (𝑧 · 𝑧))
2827breq1d 4695 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → ((𝑥 · 𝑥) ≤ 𝑃 ↔ (𝑧 · 𝑧) ≤ 𝑃))
29 breq1 4688 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → (𝑥𝑃𝑧𝑃))
3028, 29anbi12d 747 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → (((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃) ↔ ((𝑧 · 𝑧) ≤ 𝑃𝑧𝑃)))
3130rspcev 3340 . . . . . . . . . . . . . 14 ((𝑧 ∈ (ℤ‘2) ∧ ((𝑧 · 𝑧) ≤ 𝑃𝑧𝑃)) → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃))
3231ancom2s 861 . . . . . . . . . . . . 13 ((𝑧 ∈ (ℤ‘2) ∧ (𝑧𝑃 ∧ (𝑧 · 𝑧) ≤ 𝑃)) → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃))
3332expr 642 . . . . . . . . . . . 12 ((𝑧 ∈ (ℤ‘2) ∧ 𝑧𝑃) → ((𝑧 · 𝑧) ≤ 𝑃 → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)))
3433ad2ant2lr 799 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ((𝑧 · 𝑧) ≤ 𝑃 → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)))
35 simprl 809 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧𝑃)
36 eluzelz 11735 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℤ)
3736ad2antlr 763 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧 ∈ ℤ)
38 eluz2nn 11764 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℕ)
3938ad2antlr 763 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧 ∈ ℕ)
4039nnne0d 11103 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧 ≠ 0)
41 eluzelz 11735 . . . . . . . . . . . . . . . 16 (𝑃 ∈ (ℤ‘2) → 𝑃 ∈ ℤ)
4241ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑃 ∈ ℤ)
43 dvdsval2 15030 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℤ ∧ 𝑧 ≠ 0 ∧ 𝑃 ∈ ℤ) → (𝑧𝑃 ↔ (𝑃 / 𝑧) ∈ ℤ))
4437, 40, 42, 43syl3anc 1366 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑧𝑃 ↔ (𝑃 / 𝑧) ∈ ℤ))
4535, 44mpbid 222 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 / 𝑧) ∈ ℤ)
46 eluzelre 11736 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℝ)
4746ad2antlr 763 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧 ∈ ℝ)
4847recnd 10106 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧 ∈ ℂ)
4948mulid2d 10096 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (1 · 𝑧) = 𝑧)
507ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑃 ∈ ℕ)
51 dvdsle 15079 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ) → (𝑧𝑃𝑧𝑃))
5251imp 444 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ ℤ ∧ 𝑃 ∈ ℕ) ∧ 𝑧𝑃) → 𝑧𝑃)
5337, 50, 35, 52syl21anc 1365 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧𝑃)
54 simprr 811 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ¬ 𝑧 = 𝑃)
5554neqned 2830 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧𝑃)
5655necomd 2878 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑃𝑧)
576ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑃 ∈ ℝ)
5847, 57ltlend 10220 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑧 < 𝑃 ↔ (𝑧𝑃𝑃𝑧)))
5953, 56, 58mpbir2and 977 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑧 < 𝑃)
6049, 59eqbrtrd 4707 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (1 · 𝑧) < 𝑃)
61 1red 10093 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 1 ∈ ℝ)
6242zred 11520 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑃 ∈ ℝ)
63 nnre 11065 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℕ → 𝑧 ∈ ℝ)
64 nngt0 11087 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ℕ → 0 < 𝑧)
6563, 64jca 553 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ℕ → (𝑧 ∈ ℝ ∧ 0 < 𝑧))
6639, 65syl 17 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑧 ∈ ℝ ∧ 0 < 𝑧))
67 ltmuldiv 10934 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (𝑧 ∈ ℝ ∧ 0 < 𝑧)) → ((1 · 𝑧) < 𝑃 ↔ 1 < (𝑃 / 𝑧)))
6861, 62, 66, 67syl3anc 1366 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ((1 · 𝑧) < 𝑃 ↔ 1 < (𝑃 / 𝑧)))
6960, 68mpbid 222 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 1 < (𝑃 / 𝑧))
70 eluz2b1 11797 . . . . . . . . . . . . 13 ((𝑃 / 𝑧) ∈ (ℤ‘2) ↔ ((𝑃 / 𝑧) ∈ ℤ ∧ 1 < (𝑃 / 𝑧)))
7145, 69, 70sylanbrc 699 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 / 𝑧) ∈ (ℤ‘2))
7247, 47remulcld 10108 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑧 · 𝑧) ∈ ℝ)
7339, 39nnmulcld 11106 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑧 · 𝑧) ∈ ℕ)
74 nnrp 11880 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ+)
75 nnrp 11880 . . . . . . . . . . . . . . . . . 18 ((𝑧 · 𝑧) ∈ ℕ → (𝑧 · 𝑧) ∈ ℝ+)
76 rpdivcl 11894 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℝ+ ∧ (𝑧 · 𝑧) ∈ ℝ+) → (𝑃 / (𝑧 · 𝑧)) ∈ ℝ+)
7774, 75, 76syl2an 493 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℕ ∧ (𝑧 · 𝑧) ∈ ℕ) → (𝑃 / (𝑧 · 𝑧)) ∈ ℝ+)
7850, 73, 77syl2anc 694 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 / (𝑧 · 𝑧)) ∈ ℝ+)
7957, 72, 78lemul1d 11953 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 ≤ (𝑧 · 𝑧) ↔ (𝑃 · (𝑃 / (𝑧 · 𝑧))) ≤ ((𝑧 · 𝑧) · (𝑃 / (𝑧 · 𝑧)))))
8057recnd 10106 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑃 ∈ ℂ)
8180, 48, 80, 48, 40, 40divmuldivd 10880 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ((𝑃 / 𝑧) · (𝑃 / 𝑧)) = ((𝑃 · 𝑃) / (𝑧 · 𝑧)))
8273nncnd 11074 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑧 · 𝑧) ∈ ℂ)
8373nnne0d 11103 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑧 · 𝑧) ≠ 0)
8480, 80, 82, 83divassd 10874 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ((𝑃 · 𝑃) / (𝑧 · 𝑧)) = (𝑃 · (𝑃 / (𝑧 · 𝑧))))
8581, 84eqtrd 2685 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ((𝑃 / 𝑧) · (𝑃 / 𝑧)) = (𝑃 · (𝑃 / (𝑧 · 𝑧))))
8680, 82, 83divcan2d 10841 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ((𝑧 · 𝑧) · (𝑃 / (𝑧 · 𝑧))) = 𝑃)
8786eqcomd 2657 . . . . . . . . . . . . . . . 16 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → 𝑃 = ((𝑧 · 𝑧) · (𝑃 / (𝑧 · 𝑧))))
8885, 87breq12d 4698 . . . . . . . . . . . . . . 15 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (((𝑃 / 𝑧) · (𝑃 / 𝑧)) ≤ 𝑃 ↔ (𝑃 · (𝑃 / (𝑧 · 𝑧))) ≤ ((𝑧 · 𝑧) · (𝑃 / (𝑧 · 𝑧)))))
8979, 88bitr4d 271 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 ≤ (𝑧 · 𝑧) ↔ ((𝑃 / 𝑧) · (𝑃 / 𝑧)) ≤ 𝑃))
9089biimpd 219 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 ≤ (𝑧 · 𝑧) → ((𝑃 / 𝑧) · (𝑃 / 𝑧)) ≤ 𝑃))
9180, 48, 40divcan2d 10841 . . . . . . . . . . . . . 14 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑧 · (𝑃 / 𝑧)) = 𝑃)
92 dvds0lem 15039 . . . . . . . . . . . . . 14 (((𝑧 ∈ ℤ ∧ (𝑃 / 𝑧) ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ (𝑧 · (𝑃 / 𝑧)) = 𝑃) → (𝑃 / 𝑧) ∥ 𝑃)
9337, 45, 42, 91, 92syl31anc 1369 . . . . . . . . . . . . 13 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 / 𝑧) ∥ 𝑃)
9490, 93jctird 566 . . . . . . . . . . . 12 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 ≤ (𝑧 · 𝑧) → (((𝑃 / 𝑧) · (𝑃 / 𝑧)) ≤ 𝑃 ∧ (𝑃 / 𝑧) ∥ 𝑃)))
95 oveq12 6699 . . . . . . . . . . . . . . . 16 ((𝑥 = (𝑃 / 𝑧) ∧ 𝑥 = (𝑃 / 𝑧)) → (𝑥 · 𝑥) = ((𝑃 / 𝑧) · (𝑃 / 𝑧)))
9695anidms 678 . . . . . . . . . . . . . . 15 (𝑥 = (𝑃 / 𝑧) → (𝑥 · 𝑥) = ((𝑃 / 𝑧) · (𝑃 / 𝑧)))
9796breq1d 4695 . . . . . . . . . . . . . 14 (𝑥 = (𝑃 / 𝑧) → ((𝑥 · 𝑥) ≤ 𝑃 ↔ ((𝑃 / 𝑧) · (𝑃 / 𝑧)) ≤ 𝑃))
98 breq1 4688 . . . . . . . . . . . . . 14 (𝑥 = (𝑃 / 𝑧) → (𝑥𝑃 ↔ (𝑃 / 𝑧) ∥ 𝑃))
9997, 98anbi12d 747 . . . . . . . . . . . . 13 (𝑥 = (𝑃 / 𝑧) → (((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃) ↔ (((𝑃 / 𝑧) · (𝑃 / 𝑧)) ≤ 𝑃 ∧ (𝑃 / 𝑧) ∥ 𝑃)))
10099rspcev 3340 . . . . . . . . . . . 12 (((𝑃 / 𝑧) ∈ (ℤ‘2) ∧ (((𝑃 / 𝑧) · (𝑃 / 𝑧)) ≤ 𝑃 ∧ (𝑃 / 𝑧) ∥ 𝑃)) → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃))
10171, 94, 100syl6an 567 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → (𝑃 ≤ (𝑧 · 𝑧) → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)))
10272, 57letrid 10227 . . . . . . . . . . 11 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ((𝑧 · 𝑧) ≤ 𝑃𝑃 ≤ (𝑧 · 𝑧)))
10334, 101, 102mpjaod 395 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) ∧ (𝑧𝑃 ∧ ¬ 𝑧 = 𝑃)) → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃))
104103ex 449 . . . . . . . . 9 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → ((𝑧𝑃 ∧ ¬ 𝑧 = 𝑃) → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)))
10525, 104syl5bir 233 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ 𝑧 ∈ (ℤ‘2)) → (¬ (𝑧𝑃𝑧 = 𝑃) → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)))
106105rexlimdva 3060 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → (∃𝑧 ∈ (ℤ‘2) ¬ (𝑧𝑃𝑧 = 𝑃) → ∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)))
107 prmz 15436 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℙ → 𝑧 ∈ ℤ)
108107ad2antrl 764 . . . . . . . . . . . . . 14 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑧 ∈ ℤ)
109108zred 11520 . . . . . . . . . . . . 13 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑧 ∈ ℝ)
110109, 109remulcld 10108 . . . . . . . . . . . 12 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → (𝑧 · 𝑧) ∈ ℝ)
111 eluzelz 11735 . . . . . . . . . . . . . . 15 (𝑥 ∈ (ℤ‘2) → 𝑥 ∈ ℤ)
112111ad3antlr 767 . . . . . . . . . . . . . 14 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑥 ∈ ℤ)
113112zred 11520 . . . . . . . . . . . . 13 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑥 ∈ ℝ)
114113, 113remulcld 10108 . . . . . . . . . . . 12 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → (𝑥 · 𝑥) ∈ ℝ)
11541ad3antrrr 766 . . . . . . . . . . . . 13 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑃 ∈ ℤ)
116115zred 11520 . . . . . . . . . . . 12 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑃 ∈ ℝ)
117 eluz2nn 11764 . . . . . . . . . . . . . . 15 (𝑥 ∈ (ℤ‘2) → 𝑥 ∈ ℕ)
118117ad3antlr 767 . . . . . . . . . . . . . 14 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑥 ∈ ℕ)
119 simprr 811 . . . . . . . . . . . . . 14 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑧𝑥)
120 dvdsle 15079 . . . . . . . . . . . . . . 15 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℕ) → (𝑧𝑥𝑧𝑥))
121120imp 444 . . . . . . . . . . . . . 14 (((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℕ) ∧ 𝑧𝑥) → 𝑧𝑥)
122108, 118, 119, 121syl21anc 1365 . . . . . . . . . . . . 13 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑧𝑥)
123 eluzge2nn0 11765 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℕ0)
124123nn0ge0d 11392 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (ℤ‘2) → 0 ≤ 𝑧)
1252, 124syl 17 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℙ → 0 ≤ 𝑧)
126125ad2antrl 764 . . . . . . . . . . . . . 14 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 0 ≤ 𝑧)
127 nnnn0 11337 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
128127nn0ge0d 11392 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℕ → 0 ≤ 𝑥)
129118, 128syl 17 . . . . . . . . . . . . . 14 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 0 ≤ 𝑥)
130 le2msq 10961 . . . . . . . . . . . . . 14 (((𝑧 ∈ ℝ ∧ 0 ≤ 𝑧) ∧ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥)) → (𝑧𝑥 ↔ (𝑧 · 𝑧) ≤ (𝑥 · 𝑥)))
131109, 126, 113, 129, 130syl22anc 1367 . . . . . . . . . . . . 13 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → (𝑧𝑥 ↔ (𝑧 · 𝑧) ≤ (𝑥 · 𝑥)))
132122, 131mpbid 222 . . . . . . . . . . . 12 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → (𝑧 · 𝑧) ≤ (𝑥 · 𝑥))
133 simplrl 817 . . . . . . . . . . . 12 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → (𝑥 · 𝑥) ≤ 𝑃)
134110, 114, 116, 132, 133letrd 10232 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → (𝑧 · 𝑧) ≤ 𝑃)
135 simplrr 818 . . . . . . . . . . . 12 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑥𝑃)
136 dvdstr 15065 . . . . . . . . . . . . 13 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑧𝑥𝑥𝑃) → 𝑧𝑃))
137108, 112, 115, 136syl3anc 1366 . . . . . . . . . . . 12 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → ((𝑧𝑥𝑥𝑃) → 𝑧𝑃))
138119, 135, 137mp2and 715 . . . . . . . . . . 11 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → 𝑧𝑃)
139134, 138jc 159 . . . . . . . . . 10 ((((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) ∧ (𝑧 ∈ ℙ ∧ 𝑧𝑥)) → ¬ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃))
140 exprmfct 15463 . . . . . . . . . . 11 (𝑥 ∈ (ℤ‘2) → ∃𝑧 ∈ ℙ 𝑧𝑥)
141140ad2antlr 763 . . . . . . . . . 10 (((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) → ∃𝑧 ∈ ℙ 𝑧𝑥)
142139, 141reximddv 3047 . . . . . . . . 9 (((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) ∧ ((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃)) → ∃𝑧 ∈ ℙ ¬ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃))
143142ex 449 . . . . . . . 8 ((𝑃 ∈ (ℤ‘2) ∧ 𝑥 ∈ (ℤ‘2)) → (((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃) → ∃𝑧 ∈ ℙ ¬ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃)))
144143rexlimdva 3060 . . . . . . 7 (𝑃 ∈ (ℤ‘2) → (∃𝑥 ∈ (ℤ‘2)((𝑥 · 𝑥) ≤ 𝑃𝑥𝑃) → ∃𝑧 ∈ ℙ ¬ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃)))
145106, 144syld 47 . . . . . 6 (𝑃 ∈ (ℤ‘2) → (∃𝑧 ∈ (ℤ‘2) ¬ (𝑧𝑃𝑧 = 𝑃) → ∃𝑧 ∈ ℙ ¬ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃)))
146 rexnal 3024 . . . . . 6 (∃𝑧 ∈ (ℤ‘2) ¬ (𝑧𝑃𝑧 = 𝑃) ↔ ¬ ∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃))
147 rexnal 3024 . . . . . 6 (∃𝑧 ∈ ℙ ¬ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃) ↔ ¬ ∀𝑧 ∈ ℙ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃))
148145, 146, 1473imtr3g 284 . . . . 5 (𝑃 ∈ (ℤ‘2) → (¬ ∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃) → ¬ ∀𝑧 ∈ ℙ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃)))
14924, 148impcon4bid 217 . . . 4 (𝑃 ∈ (ℤ‘2) → (∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃) ↔ ∀𝑧 ∈ ℙ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃)))
150 prmnn 15435 . . . . . . . . 9 (𝑧 ∈ ℙ → 𝑧 ∈ ℕ)
151150nncnd 11074 . . . . . . . 8 (𝑧 ∈ ℙ → 𝑧 ∈ ℂ)
152151sqvald 13045 . . . . . . 7 (𝑧 ∈ ℙ → (𝑧↑2) = (𝑧 · 𝑧))
153152breq1d 4695 . . . . . 6 (𝑧 ∈ ℙ → ((𝑧↑2) ≤ 𝑃 ↔ (𝑧 · 𝑧) ≤ 𝑃))
154153imbi1d 330 . . . . 5 (𝑧 ∈ ℙ → (((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃) ↔ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃)))
155154ralbiia 3008 . . . 4 (∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃) ↔ ∀𝑧 ∈ ℙ ((𝑧 · 𝑧) ≤ 𝑃 → ¬ 𝑧𝑃))
156149, 155syl6bbr 278 . . 3 (𝑃 ∈ (ℤ‘2) → (∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃) ↔ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
157156pm5.32i 670 . 2 ((𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ (ℤ‘2)(𝑧𝑃𝑧 = 𝑃)) ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
1581, 157bitri 264 1 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℙ ((𝑧↑2) ≤ 𝑃 → ¬ 𝑧𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942   class class class wbr 4685  cfv 5926  (class class class)co 6690  cr 9973  0cc0 9974  1c1 9975   · cmul 9979   < clt 10112  cle 10113   / cdiv 10722  cn 11058  2c2 11108  cz 11415  cuz 11725  +crp 11870  cexp 12900  cdvds 15027  cprime 15432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-prm 15433
This theorem is referenced by:  isprm7  15467  pockthg  15657  prmlem1a  15860
  Copyright terms: Public domain W3C validator