MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm2lem Structured version   Visualization version   GIF version

Theorem isprm2lem 15600
Description: Lemma for isprm2 15601. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
isprm2lem ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜 ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}))
Distinct variable group:   𝑃,𝑛

Proof of Theorem isprm2lem
StepHypRef Expression
1 simplr 744 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜) → 𝑃 ≠ 1)
21necomd 2997 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜) → 1 ≠ 𝑃)
3 simpr 471 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜) → {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜)
4 nnz 11600 . . . . . . . 8 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
5 1dvds 15204 . . . . . . . 8 (𝑃 ∈ ℤ → 1 ∥ 𝑃)
64, 5syl 17 . . . . . . 7 (𝑃 ∈ ℕ → 1 ∥ 𝑃)
76ad2antrr 697 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜) → 1 ∥ 𝑃)
8 1nn 11232 . . . . . . 7 1 ∈ ℕ
9 breq1 4787 . . . . . . . 8 (𝑛 = 1 → (𝑛𝑃 ↔ 1 ∥ 𝑃))
109elrab3 3514 . . . . . . 7 (1 ∈ ℕ → (1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ↔ 1 ∥ 𝑃))
118, 10ax-mp 5 . . . . . 6 (1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ↔ 1 ∥ 𝑃)
127, 11sylibr 224 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜) → 1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃})
13 iddvds 15203 . . . . . . . 8 (𝑃 ∈ ℤ → 𝑃𝑃)
144, 13syl 17 . . . . . . 7 (𝑃 ∈ ℕ → 𝑃𝑃)
1514ad2antrr 697 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜) → 𝑃𝑃)
16 breq1 4787 . . . . . . . 8 (𝑛 = 𝑃 → (𝑛𝑃𝑃𝑃))
1716elrab3 3514 . . . . . . 7 (𝑃 ∈ ℕ → (𝑃 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ↔ 𝑃𝑃))
1817ad2antrr 697 . . . . . 6 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜) → (𝑃 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ↔ 𝑃𝑃))
1915, 18mpbird 247 . . . . 5 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜) → 𝑃 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃})
20 en2eqpr 9029 . . . . 5 (({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜 ∧ 1 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ∧ 𝑃 ∈ {𝑛 ∈ ℕ ∣ 𝑛𝑃}) → (1 ≠ 𝑃 → {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}))
213, 12, 19, 20syl3anc 1475 . . . 4 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜) → (1 ≠ 𝑃 → {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}))
222, 21mpd 15 . . 3 (((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) ∧ {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜) → {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃})
2322ex 397 . 2 ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜 → {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}))
24 necom 2995 . . . 4 (1 ≠ 𝑃𝑃 ≠ 1)
25 pr2ne 9027 . . . . . 6 ((1 ∈ ℕ ∧ 𝑃 ∈ ℕ) → ({1, 𝑃} ≈ 2𝑜 ↔ 1 ≠ 𝑃))
268, 25mpan 662 . . . . 5 (𝑃 ∈ ℕ → ({1, 𝑃} ≈ 2𝑜 ↔ 1 ≠ 𝑃))
2726biimpar 463 . . . 4 ((𝑃 ∈ ℕ ∧ 1 ≠ 𝑃) → {1, 𝑃} ≈ 2𝑜)
2824, 27sylan2br 574 . . 3 ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → {1, 𝑃} ≈ 2𝑜)
29 breq1 4787 . . 3 ({𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃} → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜 ↔ {1, 𝑃} ≈ 2𝑜))
3028, 29syl5ibrcom 237 . 2 ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃} → {𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜))
3123, 30impbid 202 1 ((𝑃 ∈ ℕ ∧ 𝑃 ≠ 1) → ({𝑛 ∈ ℕ ∣ 𝑛𝑃} ≈ 2𝑜 ↔ {𝑛 ∈ ℕ ∣ 𝑛𝑃} = {1, 𝑃}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1630  wcel 2144  wne 2942  {crab 3064  {cpr 4316   class class class wbr 4784  2𝑜c2o 7706  cen 8105  1c1 10138  cn 11221  cz 11578  cdvds 15188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-z 11579  df-dvds 15189
This theorem is referenced by:  isprm2  15601
  Copyright terms: Public domain W3C validator