![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ispnrm | Structured version Visualization version GIF version |
Description: The property of being perfectly normal. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
ispnrm | ⊢ (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽 ↑𝑚 ℕ) ↦ ∩ ran 𝑓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6353 | . . 3 ⊢ (𝑗 = 𝐽 → (Clsd‘𝑗) = (Clsd‘𝐽)) | |
2 | oveq1 6821 | . . . . 5 ⊢ (𝑗 = 𝐽 → (𝑗 ↑𝑚 ℕ) = (𝐽 ↑𝑚 ℕ)) | |
3 | 2 | mpteq1d 4890 | . . . 4 ⊢ (𝑗 = 𝐽 → (𝑓 ∈ (𝑗 ↑𝑚 ℕ) ↦ ∩ ran 𝑓) = (𝑓 ∈ (𝐽 ↑𝑚 ℕ) ↦ ∩ ran 𝑓)) |
4 | 3 | rneqd 5508 | . . 3 ⊢ (𝑗 = 𝐽 → ran (𝑓 ∈ (𝑗 ↑𝑚 ℕ) ↦ ∩ ran 𝑓) = ran (𝑓 ∈ (𝐽 ↑𝑚 ℕ) ↦ ∩ ran 𝑓)) |
5 | 1, 4 | sseq12d 3775 | . 2 ⊢ (𝑗 = 𝐽 → ((Clsd‘𝑗) ⊆ ran (𝑓 ∈ (𝑗 ↑𝑚 ℕ) ↦ ∩ ran 𝑓) ↔ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽 ↑𝑚 ℕ) ↦ ∩ ran 𝑓))) |
6 | df-pnrm 21345 | . 2 ⊢ PNrm = {𝑗 ∈ Nrm ∣ (Clsd‘𝑗) ⊆ ran (𝑓 ∈ (𝑗 ↑𝑚 ℕ) ↦ ∩ ran 𝑓)} | |
7 | 5, 6 | elrab2 3507 | 1 ⊢ (𝐽 ∈ PNrm ↔ (𝐽 ∈ Nrm ∧ (Clsd‘𝐽) ⊆ ran (𝑓 ∈ (𝐽 ↑𝑚 ℕ) ↦ ∩ ran 𝑓))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ⊆ wss 3715 ∩ cint 4627 ↦ cmpt 4881 ran crn 5267 ‘cfv 6049 (class class class)co 6814 ↑𝑚 cmap 8025 ℕcn 11232 Clsdccld 21042 Nrmcnrm 21336 PNrmcpnrm 21338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-cnv 5274 df-dm 5276 df-rn 5277 df-iota 6012 df-fv 6057 df-ov 6817 df-pnrm 21345 |
This theorem is referenced by: pnrmnrm 21366 pnrmcld 21368 |
Copyright terms: Public domain | W3C validator |