MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isphtpy Structured version   Visualization version   GIF version

Theorem isphtpy 22952
Description: Membership in the class of path homotopies between two continuous functions. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
isphtpy.2 (𝜑𝐹 ∈ (II Cn 𝐽))
isphtpy.3 (𝜑𝐺 ∈ (II Cn 𝐽))
Assertion
Ref Expression
isphtpy (𝜑 → (𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺) ↔ (𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1)))))
Distinct variable groups:   𝐹,𝑠   𝐺,𝑠   𝐻,𝑠   𝐽,𝑠   𝜑,𝑠

Proof of Theorem isphtpy
Dummy variables 𝑓 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isphtpy.2 . . . . 5 (𝜑𝐹 ∈ (II Cn 𝐽))
2 cntop2 21218 . . . . 5 (𝐹 ∈ (II Cn 𝐽) → 𝐽 ∈ Top)
3 oveq2 6809 . . . . . . 7 (𝑗 = 𝐽 → (II Cn 𝑗) = (II Cn 𝐽))
4 oveq2 6809 . . . . . . . . 9 (𝑗 = 𝐽 → (II Htpy 𝑗) = (II Htpy 𝐽))
54oveqd 6818 . . . . . . . 8 (𝑗 = 𝐽 → (𝑓(II Htpy 𝑗)𝑔) = (𝑓(II Htpy 𝐽)𝑔))
6 rabeq 3320 . . . . . . . 8 ((𝑓(II Htpy 𝑗)𝑔) = (𝑓(II Htpy 𝐽)𝑔) → { ∈ (𝑓(II Htpy 𝑗)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝑓‘0) ∧ (1𝑠) = (𝑓‘1))} = { ∈ (𝑓(II Htpy 𝐽)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝑓‘0) ∧ (1𝑠) = (𝑓‘1))})
75, 6syl 17 . . . . . . 7 (𝑗 = 𝐽 → { ∈ (𝑓(II Htpy 𝑗)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝑓‘0) ∧ (1𝑠) = (𝑓‘1))} = { ∈ (𝑓(II Htpy 𝐽)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝑓‘0) ∧ (1𝑠) = (𝑓‘1))})
83, 3, 7mpt2eq123dv 6870 . . . . . 6 (𝑗 = 𝐽 → (𝑓 ∈ (II Cn 𝑗), 𝑔 ∈ (II Cn 𝑗) ↦ { ∈ (𝑓(II Htpy 𝑗)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝑓‘0) ∧ (1𝑠) = (𝑓‘1))}) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ { ∈ (𝑓(II Htpy 𝐽)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝑓‘0) ∧ (1𝑠) = (𝑓‘1))}))
9 df-phtpy 22942 . . . . . 6 PHtpy = (𝑗 ∈ Top ↦ (𝑓 ∈ (II Cn 𝑗), 𝑔 ∈ (II Cn 𝑗) ↦ { ∈ (𝑓(II Htpy 𝑗)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝑓‘0) ∧ (1𝑠) = (𝑓‘1))}))
10 ovex 6829 . . . . . . 7 (II Cn 𝐽) ∈ V
1110, 10mpt2ex 7403 . . . . . 6 (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ { ∈ (𝑓(II Htpy 𝐽)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝑓‘0) ∧ (1𝑠) = (𝑓‘1))}) ∈ V
128, 9, 11fvmpt 6432 . . . . 5 (𝐽 ∈ Top → (PHtpy‘𝐽) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ { ∈ (𝑓(II Htpy 𝐽)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝑓‘0) ∧ (1𝑠) = (𝑓‘1))}))
131, 2, 123syl 18 . . . 4 (𝜑 → (PHtpy‘𝐽) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ { ∈ (𝑓(II Htpy 𝐽)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝑓‘0) ∧ (1𝑠) = (𝑓‘1))}))
14 oveq12 6810 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓(II Htpy 𝐽)𝑔) = (𝐹(II Htpy 𝐽)𝐺))
15 simpl 474 . . . . . . . . . 10 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑓 = 𝐹)
1615fveq1d 6342 . . . . . . . . 9 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓‘0) = (𝐹‘0))
1716eqeq2d 2758 . . . . . . . 8 ((𝑓 = 𝐹𝑔 = 𝐺) → ((0𝑠) = (𝑓‘0) ↔ (0𝑠) = (𝐹‘0)))
1815fveq1d 6342 . . . . . . . . 9 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓‘1) = (𝐹‘1))
1918eqeq2d 2758 . . . . . . . 8 ((𝑓 = 𝐹𝑔 = 𝐺) → ((1𝑠) = (𝑓‘1) ↔ (1𝑠) = (𝐹‘1)))
2017, 19anbi12d 749 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → (((0𝑠) = (𝑓‘0) ∧ (1𝑠) = (𝑓‘1)) ↔ ((0𝑠) = (𝐹‘0) ∧ (1𝑠) = (𝐹‘1))))
2120ralbidv 3112 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → (∀𝑠 ∈ (0[,]1)((0𝑠) = (𝑓‘0) ∧ (1𝑠) = (𝑓‘1)) ↔ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝐹‘0) ∧ (1𝑠) = (𝐹‘1))))
2214, 21rabeqbidv 3323 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → { ∈ (𝑓(II Htpy 𝐽)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝑓‘0) ∧ (1𝑠) = (𝑓‘1))} = { ∈ (𝐹(II Htpy 𝐽)𝐺) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝐹‘0) ∧ (1𝑠) = (𝐹‘1))})
2322adantl 473 . . . 4 ((𝜑 ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → { ∈ (𝑓(II Htpy 𝐽)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝑓‘0) ∧ (1𝑠) = (𝑓‘1))} = { ∈ (𝐹(II Htpy 𝐽)𝐺) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝐹‘0) ∧ (1𝑠) = (𝐹‘1))})
24 isphtpy.3 . . . 4 (𝜑𝐺 ∈ (II Cn 𝐽))
25 ovex 6829 . . . . . 6 (𝐹(II Htpy 𝐽)𝐺) ∈ V
2625rabex 4952 . . . . 5 { ∈ (𝐹(II Htpy 𝐽)𝐺) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝐹‘0) ∧ (1𝑠) = (𝐹‘1))} ∈ V
2726a1i 11 . . . 4 (𝜑 → { ∈ (𝐹(II Htpy 𝐽)𝐺) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝐹‘0) ∧ (1𝑠) = (𝐹‘1))} ∈ V)
2813, 23, 1, 24, 27ovmpt2d 6941 . . 3 (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) = { ∈ (𝐹(II Htpy 𝐽)𝐺) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝐹‘0) ∧ (1𝑠) = (𝐹‘1))})
2928eleq2d 2813 . 2 (𝜑 → (𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺) ↔ 𝐻 ∈ { ∈ (𝐹(II Htpy 𝐽)𝐺) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝐹‘0) ∧ (1𝑠) = (𝐹‘1))}))
30 oveq 6807 . . . . . 6 ( = 𝐻 → (0𝑠) = (0𝐻𝑠))
3130eqeq1d 2750 . . . . 5 ( = 𝐻 → ((0𝑠) = (𝐹‘0) ↔ (0𝐻𝑠) = (𝐹‘0)))
32 oveq 6807 . . . . . 6 ( = 𝐻 → (1𝑠) = (1𝐻𝑠))
3332eqeq1d 2750 . . . . 5 ( = 𝐻 → ((1𝑠) = (𝐹‘1) ↔ (1𝐻𝑠) = (𝐹‘1)))
3431, 33anbi12d 749 . . . 4 ( = 𝐻 → (((0𝑠) = (𝐹‘0) ∧ (1𝑠) = (𝐹‘1)) ↔ ((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1))))
3534ralbidv 3112 . . 3 ( = 𝐻 → (∀𝑠 ∈ (0[,]1)((0𝑠) = (𝐹‘0) ∧ (1𝑠) = (𝐹‘1)) ↔ ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1))))
3635elrab 3492 . 2 (𝐻 ∈ { ∈ (𝐹(II Htpy 𝐽)𝐺) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝐹‘0) ∧ (1𝑠) = (𝐹‘1))} ↔ (𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1))))
3729, 36syl6bb 276 1 (𝜑 → (𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺) ↔ (𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺) ∧ ∀𝑠 ∈ (0[,]1)((0𝐻𝑠) = (𝐹‘0) ∧ (1𝐻𝑠) = (𝐹‘1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1620  wcel 2127  wral 3038  {crab 3042  Vcvv 3328  cfv 6037  (class class class)co 6801  cmpt2 6803  0cc0 10099  1c1 10100  [,]cicc 12342  Topctop 20871   Cn ccn 21201  IIcii 22850   Htpy chtpy 22938  PHtpycphtpy 22939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-1st 7321  df-2nd 7322  df-map 8013  df-top 20872  df-topon 20889  df-cn 21204  df-phtpy 22942
This theorem is referenced by:  phtpyhtpy  22953  phtpyi  22955  isphtpyd  22957
  Copyright terms: Public domain W3C validator