MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isphtpc Structured version   Visualization version   GIF version

Theorem isphtpc 23014
Description: The relation "is path homotopic to". (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Sep-2015.)
Assertion
Ref Expression
isphtpc (𝐹( ≃ph𝐽)𝐺 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅))

Proof of Theorem isphtpc
Dummy variables 𝑓 𝑔 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4805 . . 3 (𝐹( ≃ph𝐽)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ ( ≃ph𝐽))
2 df-phtpc 23012 . . . . 5 ph = (𝑗 ∈ Top ↦ {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ (II Cn 𝑗) ∧ (𝑓(PHtpy‘𝑗)𝑔) ≠ ∅)})
32dmmptss 5792 . . . 4 dom ≃ph ⊆ Top
4 elfvdm 6382 . . . 4 (⟨𝐹, 𝐺⟩ ∈ ( ≃ph𝐽) → 𝐽 ∈ dom ≃ph)
53, 4sseldi 3742 . . 3 (⟨𝐹, 𝐺⟩ ∈ ( ≃ph𝐽) → 𝐽 ∈ Top)
61, 5sylbi 207 . 2 (𝐹( ≃ph𝐽)𝐺𝐽 ∈ Top)
7 cntop2 21267 . . 3 (𝐹 ∈ (II Cn 𝐽) → 𝐽 ∈ Top)
873ad2ant1 1128 . 2 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅) → 𝐽 ∈ Top)
9 oveq2 6822 . . . . . . . . 9 (𝑗 = 𝐽 → (II Cn 𝑗) = (II Cn 𝐽))
109sseq2d 3774 . . . . . . . 8 (𝑗 = 𝐽 → ({𝑓, 𝑔} ⊆ (II Cn 𝑗) ↔ {𝑓, 𝑔} ⊆ (II Cn 𝐽)))
11 vex 3343 . . . . . . . . 9 𝑓 ∈ V
12 vex 3343 . . . . . . . . 9 𝑔 ∈ V
1311, 12prss 4496 . . . . . . . 8 ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ↔ {𝑓, 𝑔} ⊆ (II Cn 𝐽))
1410, 13syl6bbr 278 . . . . . . 7 (𝑗 = 𝐽 → ({𝑓, 𝑔} ⊆ (II Cn 𝑗) ↔ (𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽))))
15 fveq2 6353 . . . . . . . . 9 (𝑗 = 𝐽 → (PHtpy‘𝑗) = (PHtpy‘𝐽))
1615oveqd 6831 . . . . . . . 8 (𝑗 = 𝐽 → (𝑓(PHtpy‘𝑗)𝑔) = (𝑓(PHtpy‘𝐽)𝑔))
1716neeq1d 2991 . . . . . . 7 (𝑗 = 𝐽 → ((𝑓(PHtpy‘𝑗)𝑔) ≠ ∅ ↔ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅))
1814, 17anbi12d 749 . . . . . 6 (𝑗 = 𝐽 → (({𝑓, 𝑔} ⊆ (II Cn 𝑗) ∧ (𝑓(PHtpy‘𝑗)𝑔) ≠ ∅) ↔ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)))
1918opabbidv 4868 . . . . 5 (𝑗 = 𝐽 → {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ (II Cn 𝑗) ∧ (𝑓(PHtpy‘𝑗)𝑔) ≠ ∅)} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)})
20 ovex 6842 . . . . . . 7 (II Cn 𝐽) ∈ V
2120, 20xpex 7128 . . . . . 6 ((II Cn 𝐽) × (II Cn 𝐽)) ∈ V
22 opabssxp 5350 . . . . . 6 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)} ⊆ ((II Cn 𝐽) × (II Cn 𝐽))
2321, 22ssexi 4955 . . . . 5 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)} ∈ V
2419, 2, 23fvmpt 6445 . . . 4 (𝐽 ∈ Top → ( ≃ph𝐽) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)})
2524breqd 4815 . . 3 (𝐽 ∈ Top → (𝐹( ≃ph𝐽)𝐺𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)}𝐺))
26 oveq12 6823 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓(PHtpy‘𝐽)𝑔) = (𝐹(PHtpy‘𝐽)𝐺))
2726neeq1d 2991 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓(PHtpy‘𝐽)𝑔) ≠ ∅ ↔ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅))
28 eqid 2760 . . . . 5 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)} = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)}
2927, 28brab2a 5351 . . . 4 (𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)}𝐺 ↔ ((𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽)) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅))
30 df-3an 1074 . . . 4 ((𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅) ↔ ((𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽)) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅))
3129, 30bitr4i 267 . . 3 (𝐹{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (II Cn 𝐽) ∧ 𝑔 ∈ (II Cn 𝐽)) ∧ (𝑓(PHtpy‘𝐽)𝑔) ≠ ∅)}𝐺 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅))
3225, 31syl6bb 276 . 2 (𝐽 ∈ Top → (𝐹( ≃ph𝐽)𝐺 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅)))
336, 8, 32pm5.21nii 367 1 (𝐹( ≃ph𝐽)𝐺 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wss 3715  c0 4058  {cpr 4323  cop 4327   class class class wbr 4804  {copab 4864   × cxp 5264  dom cdm 5266  cfv 6049  (class class class)co 6814  Topctop 20920   Cn ccn 21250  IIcii 22899  PHtpycphtpy 22988  phcphtpc 22989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-map 8027  df-top 20921  df-topon 20938  df-cn 21253  df-phtpc 23012
This theorem is referenced by:  phtpcer  23015  phtpc01  23016  reparpht  23018  phtpcco2  23019  pcohtpylem  23039  pcohtpy  23040  pcorevlem  23046  pi1blem  23059  txsconnlem  31550  txsconn  31551  cvxsconn  31553  cvmliftpht  31628
  Copyright terms: Public domain W3C validator