MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isores3 Structured version   Visualization version   GIF version

Theorem isores3 6740
Description: Induced isomorphism on a subset. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Assertion
Ref Expression
isores3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐾𝐴𝑋 = (𝐻𝐾)) → (𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, 𝑋))

Proof of Theorem isores3
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1of1 6289 . . . . . . 7 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴1-1𝐵)
2 f1ores 6304 . . . . . . . 8 ((𝐻:𝐴1-1𝐵𝐾𝐴) → (𝐻𝐾):𝐾1-1-onto→(𝐻𝐾))
32expcom 450 . . . . . . 7 (𝐾𝐴 → (𝐻:𝐴1-1𝐵 → (𝐻𝐾):𝐾1-1-onto→(𝐻𝐾)))
41, 3syl5 34 . . . . . 6 (𝐾𝐴 → (𝐻:𝐴1-1-onto𝐵 → (𝐻𝐾):𝐾1-1-onto→(𝐻𝐾)))
5 ssralv 3799 . . . . . . 7 (𝐾𝐴 → (∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑎𝐾𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))))
6 ssralv 3799 . . . . . . . . . 10 (𝐾𝐴 → (∀𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑏𝐾 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))))
76adantr 472 . . . . . . . . 9 ((𝐾𝐴𝑎𝐾) → (∀𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑏𝐾 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))))
8 fvres 6360 . . . . . . . . . . . . . 14 (𝑎𝐾 → ((𝐻𝐾)‘𝑎) = (𝐻𝑎))
9 fvres 6360 . . . . . . . . . . . . . 14 (𝑏𝐾 → ((𝐻𝐾)‘𝑏) = (𝐻𝑏))
108, 9breqan12d 4812 . . . . . . . . . . . . 13 ((𝑎𝐾𝑏𝐾) → (((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏) ↔ (𝐻𝑎)𝑆(𝐻𝑏)))
1110adantll 752 . . . . . . . . . . . 12 (((𝐾𝐴𝑎𝐾) ∧ 𝑏𝐾) → (((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏) ↔ (𝐻𝑎)𝑆(𝐻𝑏)))
1211bibi2d 331 . . . . . . . . . . 11 (((𝐾𝐴𝑎𝐾) ∧ 𝑏𝐾) → ((𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏)) ↔ (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))))
1312biimprd 238 . . . . . . . . . 10 (((𝐾𝐴𝑎𝐾) ∧ 𝑏𝐾) → ((𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏))))
1413ralimdva 3092 . . . . . . . . 9 ((𝐾𝐴𝑎𝐾) → (∀𝑏𝐾 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑏𝐾 (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏))))
157, 14syld 47 . . . . . . . 8 ((𝐾𝐴𝑎𝐾) → (∀𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑏𝐾 (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏))))
1615ralimdva 3092 . . . . . . 7 (𝐾𝐴 → (∀𝑎𝐾𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑎𝐾𝑏𝐾 (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏))))
175, 16syld 47 . . . . . 6 (𝐾𝐴 → (∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏)) → ∀𝑎𝐾𝑏𝐾 (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏))))
184, 17anim12d 587 . . . . 5 (𝐾𝐴 → ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))) → ((𝐻𝐾):𝐾1-1-onto→(𝐻𝐾) ∧ ∀𝑎𝐾𝑏𝐾 (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏)))))
19 df-isom 6050 . . . . 5 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑎𝐴𝑏𝐴 (𝑎𝑅𝑏 ↔ (𝐻𝑎)𝑆(𝐻𝑏))))
20 df-isom 6050 . . . . 5 ((𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, (𝐻𝐾)) ↔ ((𝐻𝐾):𝐾1-1-onto→(𝐻𝐾) ∧ ∀𝑎𝐾𝑏𝐾 (𝑎𝑅𝑏 ↔ ((𝐻𝐾)‘𝑎)𝑆((𝐻𝐾)‘𝑏))))
2118, 19, 203imtr4g 285 . . . 4 (𝐾𝐴 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, (𝐻𝐾))))
2221impcom 445 . . 3 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐾𝐴) → (𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, (𝐻𝐾)))
23 isoeq5 6726 . . 3 (𝑋 = (𝐻𝐾) → ((𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, 𝑋) ↔ (𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, (𝐻𝐾))))
2422, 23syl5ibrcom 237 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐾𝐴) → (𝑋 = (𝐻𝐾) → (𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, 𝑋)))
25243impia 1109 1 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐾𝐴𝑋 = (𝐻𝐾)) → (𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1624  wcel 2131  wral 3042  wss 3707   class class class wbr 4796  cres 5260  cima 5261  1-1wf1 6038  1-1-ontowf1o 6040  cfv 6041   Isom wiso 6042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-sep 4925  ax-nul 4933  ax-pr 5047
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ral 3047  df-rex 3048  df-rab 3051  df-v 3334  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-nul 4051  df-if 4223  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4581  df-br 4797  df-opab 4857  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050
This theorem is referenced by:  cantnfp1lem3  8742  fpwwe2lem9  9644  efcvx  24394
  Copyright terms: Public domain W3C validator