![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isopn3i | Structured version Visualization version GIF version |
Description: An open subset equals its own interior. (Contributed by Mario Carneiro, 30-Dec-2016.) |
Ref | Expression |
---|---|
isopn3i | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → ((int‘𝐽)‘𝑆) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 479 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → 𝑆 ∈ 𝐽) | |
2 | elssuni 4607 | . . 3 ⊢ (𝑆 ∈ 𝐽 → 𝑆 ⊆ ∪ 𝐽) | |
3 | eqid 2748 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
4 | 3 | isopn3 21043 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽) → (𝑆 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆)) |
5 | 2, 4 | sylan2 492 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → (𝑆 ∈ 𝐽 ↔ ((int‘𝐽)‘𝑆) = 𝑆)) |
6 | 1, 5 | mpbid 222 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) → ((int‘𝐽)‘𝑆) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1620 ∈ wcel 2127 ⊆ wss 3703 ∪ cuni 4576 ‘cfv 6037 Topctop 20871 intcnt 20994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-ral 3043 df-rex 3044 df-reu 3045 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-id 5162 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-top 20872 df-ntr 20997 |
This theorem is referenced by: maxlp 21124 cnntr 21252 bcth2 23298 dvrec 23888 dvmptres 23896 dvcnvlem 23909 dvlip 23926 dvlipcn 23927 dvlip2 23928 dvne0 23944 lhop2 23948 lhop 23949 psercn 24350 dvlog 24567 dvlog2 24569 cxpcn3 24659 efrlim 24866 lgamgulmlem2 24926 cvmlift2lem11 31573 cvmlift2lem12 31574 binomcxplemdvbinom 39023 binomcxplemnotnn0 39026 limciccioolb 40325 limcicciooub 40341 limcresiooub 40346 limcresioolb 40347 dirkercncflem2 40793 fourierdlem32 40828 fourierdlem33 40829 fourierdlem48 40843 fourierdlem49 40844 fourierdlem62 40857 fouriersw 40920 |
Copyright terms: Public domain | W3C validator |