![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isomliN | Structured version Visualization version GIF version |
Description: Properties that determine an orthomodular lattice. (Contributed by NM, 18-Sep-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isomli.0 | ⊢ 𝐾 ∈ OL |
isomli.b | ⊢ 𝐵 = (Base‘𝐾) |
isomli.l | ⊢ ≤ = (le‘𝐾) |
isomli.j | ⊢ ∨ = (join‘𝐾) |
isomli.m | ⊢ ∧ = (meet‘𝐾) |
isomli.o | ⊢ ⊥ = (oc‘𝐾) |
isomli.7 | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥))))) |
Ref | Expression |
---|---|
isomliN | ⊢ 𝐾 ∈ OML |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isomli.0 | . 2 ⊢ 𝐾 ∈ OL | |
2 | isomli.7 | . . 3 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥))))) | |
3 | 2 | rgen2a 3115 | . 2 ⊢ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥)))) |
4 | isomli.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
5 | isomli.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
6 | isomli.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
7 | isomli.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
8 | isomli.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
9 | 4, 5, 6, 7, 8 | isoml 35028 | . 2 ⊢ (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 → 𝑦 = (𝑥 ∨ (𝑦 ∧ ( ⊥ ‘𝑥)))))) |
10 | 1, 3, 9 | mpbir2an 993 | 1 ⊢ 𝐾 ∈ OML |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∀wral 3050 class class class wbr 4804 ‘cfv 6049 (class class class)co 6813 Basecbs 16059 lecple 16150 occoc 16151 joincjn 17145 meetcmee 17146 OLcol 34964 OMLcoml 34965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-iota 6012 df-fv 6057 df-ov 6816 df-oml 34969 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |