Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isome Structured version   Visualization version   GIF version

Theorem isome 41222
 Description: Express the predicate "𝑂 is an outer measure." Definition 113A of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
isome (𝑂𝑉 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
Distinct variable group:   𝑦,𝑂,𝑧
Allowed substitution hints:   𝑉(𝑦,𝑧)

Proof of Theorem isome
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . 7 (𝑥 = 𝑂𝑥 = 𝑂)
2 dmeq 5462 . . . . . . 7 (𝑥 = 𝑂 → dom 𝑥 = dom 𝑂)
31, 2feq12d 6173 . . . . . 6 (𝑥 = 𝑂 → (𝑥:dom 𝑥⟶(0[,]+∞) ↔ 𝑂:dom 𝑂⟶(0[,]+∞)))
42unieqd 4582 . . . . . . . 8 (𝑥 = 𝑂 dom 𝑥 = dom 𝑂)
54pweqd 4300 . . . . . . 7 (𝑥 = 𝑂 → 𝒫 dom 𝑥 = 𝒫 dom 𝑂)
62, 5eqeq12d 2785 . . . . . 6 (𝑥 = 𝑂 → (dom 𝑥 = 𝒫 dom 𝑥 ↔ dom 𝑂 = 𝒫 dom 𝑂))
73, 6anbi12d 608 . . . . 5 (𝑥 = 𝑂 → ((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 dom 𝑥) ↔ (𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂)))
8 fveq1 6331 . . . . . 6 (𝑥 = 𝑂 → (𝑥‘∅) = (𝑂‘∅))
98eqeq1d 2772 . . . . 5 (𝑥 = 𝑂 → ((𝑥‘∅) = 0 ↔ (𝑂‘∅) = 0))
107, 9anbi12d 608 . . . 4 (𝑥 = 𝑂 → (((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 dom 𝑥) ∧ (𝑥‘∅) = 0) ↔ ((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0)))
11 fveq1 6331 . . . . . . 7 (𝑥 = 𝑂 → (𝑥𝑧) = (𝑂𝑧))
12 fveq1 6331 . . . . . . 7 (𝑥 = 𝑂 → (𝑥𝑦) = (𝑂𝑦))
1311, 12breq12d 4797 . . . . . 6 (𝑥 = 𝑂 → ((𝑥𝑧) ≤ (𝑥𝑦) ↔ (𝑂𝑧) ≤ (𝑂𝑦)))
1413ralbidv 3134 . . . . 5 (𝑥 = 𝑂 → (∀𝑧 ∈ 𝒫 𝑦(𝑥𝑧) ≤ (𝑥𝑦) ↔ ∀𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)))
155, 14raleqbidv 3300 . . . 4 (𝑥 = 𝑂 → (∀𝑦 ∈ 𝒫 dom 𝑥𝑧 ∈ 𝒫 𝑦(𝑥𝑧) ≤ (𝑥𝑦) ↔ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)))
1610, 15anbi12d 608 . . 3 (𝑥 = 𝑂 → ((((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 dom 𝑥) ∧ (𝑥‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥𝑧 ∈ 𝒫 𝑦(𝑥𝑧) ≤ (𝑥𝑦)) ↔ (((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦))))
172pweqd 4300 . . . 4 (𝑥 = 𝑂 → 𝒫 dom 𝑥 = 𝒫 dom 𝑂)
18 fveq1 6331 . . . . . 6 (𝑥 = 𝑂 → (𝑥 𝑦) = (𝑂 𝑦))
19 reseq1 5528 . . . . . . 7 (𝑥 = 𝑂 → (𝑥𝑦) = (𝑂𝑦))
2019fveq2d 6336 . . . . . 6 (𝑥 = 𝑂 → (Σ^‘(𝑥𝑦)) = (Σ^‘(𝑂𝑦)))
2118, 20breq12d 4797 . . . . 5 (𝑥 = 𝑂 → ((𝑥 𝑦) ≤ (Σ^‘(𝑥𝑦)) ↔ (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))
2221imbi2d 329 . . . 4 (𝑥 = 𝑂 → ((𝑦 ≼ ω → (𝑥 𝑦) ≤ (Σ^‘(𝑥𝑦))) ↔ (𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)))))
2317, 22raleqbidv 3300 . . 3 (𝑥 = 𝑂 → (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≼ ω → (𝑥 𝑦) ≤ (Σ^‘(𝑥𝑦))) ↔ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)))))
2416, 23anbi12d 608 . 2 (𝑥 = 𝑂 → (((((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 dom 𝑥) ∧ (𝑥‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥𝑧 ∈ 𝒫 𝑦(𝑥𝑧) ≤ (𝑥𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≼ ω → (𝑥 𝑦) ≤ (Σ^‘(𝑥𝑦)))) ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
25 df-ome 41218 . 2 OutMeas = {𝑥 ∣ ((((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 dom 𝑥) ∧ (𝑥‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥𝑧 ∈ 𝒫 𝑦(𝑥𝑧) ≤ (𝑥𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≼ ω → (𝑥 𝑦) ≤ (Σ^‘(𝑥𝑦))))}
2624, 25elab2g 3502 1 (𝑂𝑉 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1630   ∈ wcel 2144  ∀wral 3060  ∅c0 4061  𝒫 cpw 4295  ∪ cuni 4572   class class class wbr 4784  dom cdm 5249   ↾ cres 5251  ⟶wf 6027  ‘cfv 6031  (class class class)co 6792  ωcom 7211   ≼ cdom 8106  0cc0 10137  +∞cpnf 10272   ≤ cle 10276  [,]cicc 12382  Σ^csumge0 41090  OutMeascome 41217 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-fv 6039  df-ome 41218 This theorem is referenced by:  omef  41224  ome0  41225  omessle  41226  omedm  41227  omeunile  41233  0ome  41257  isomennd  41259
 Copyright terms: Public domain W3C validator