Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isofr Structured version   Visualization version   GIF version

Theorem isofr 6751
 Description: An isomorphism preserves well-foundedness. Proposition 6.32(1) of [TakeutiZaring] p. 33. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 18-Nov-2014.)
Assertion
Ref Expression
isofr (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Fr 𝐴𝑆 Fr 𝐵))

Proof of Theorem isofr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isocnv 6739 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴))
2 id 22 . . . 4 (𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) → 𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴))
3 isof1o 6732 . . . . 5 (𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) → 𝐻:𝐵1-1-onto𝐴)
4 f1ofun 6296 . . . . 5 (𝐻:𝐵1-1-onto𝐴 → Fun 𝐻)
5 vex 3339 . . . . . 6 𝑥 ∈ V
65funimaex 6133 . . . . 5 (Fun 𝐻 → (𝐻𝑥) ∈ V)
73, 4, 63syl 18 . . . 4 (𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) → (𝐻𝑥) ∈ V)
82, 7isofrlem 6749 . . 3 (𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) → (𝑅 Fr 𝐴𝑆 Fr 𝐵))
91, 8syl 17 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Fr 𝐴𝑆 Fr 𝐵))
10 id 22 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
11 isof1o 6732 . . . 4 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
12 f1ofun 6296 . . . 4 (𝐻:𝐴1-1-onto𝐵 → Fun 𝐻)
135funimaex 6133 . . . 4 (Fun 𝐻 → (𝐻𝑥) ∈ V)
1411, 12, 133syl 18 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐻𝑥) ∈ V)
1510, 14isofrlem 6749 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Fr 𝐵𝑅 Fr 𝐴))
169, 15impbid 202 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Fr 𝐴𝑆 Fr 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∈ wcel 2135  Vcvv 3336   Fr wfr 5218  ◡ccnv 5261   “ cima 5265  Fun wfun 6039  –1-1-onto→wf1o 6044   Isom wiso 6046 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-ral 3051  df-rex 3052  df-rab 3055  df-v 3338  df-sbc 3573  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-nul 4055  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4585  df-br 4801  df-opab 4861  df-id 5170  df-fr 5221  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-isom 6054 This theorem is referenced by:  isowe  6758  wofib  8611  isfin1-4  9397
 Copyright terms: Public domain W3C validator