![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isof1oopb | Structured version Visualization version GIF version |
Description: A function is a bijection iff it is an isomorphism regarding the universal class of ordered pairs as relations. (Contributed by AV, 9-May-2021.) |
Ref | Expression |
---|---|
isof1oopb | ⊢ (𝐻:𝐴–1-1-onto→𝐵 ↔ 𝐻 Isom (V × V), (V × V)(𝐴, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6363 | . . . . . . . . 9 ⊢ (𝐻‘𝑥) ∈ V | |
2 | fvex 6363 | . . . . . . . . 9 ⊢ (𝐻‘𝑦) ∈ V | |
3 | 1, 2 | opelvv 5323 | . . . . . . . 8 ⊢ 〈(𝐻‘𝑥), (𝐻‘𝑦)〉 ∈ (V × V) |
4 | df-br 4805 | . . . . . . . 8 ⊢ ((𝐻‘𝑥)(V × V)(𝐻‘𝑦) ↔ 〈(𝐻‘𝑥), (𝐻‘𝑦)〉 ∈ (V × V)) | |
5 | 3, 4 | mpbir 221 | . . . . . . 7 ⊢ (𝐻‘𝑥)(V × V)(𝐻‘𝑦) |
6 | 5 | a1i 11 | . . . . . 6 ⊢ (𝑥(V × V)𝑦 → (𝐻‘𝑥)(V × V)(𝐻‘𝑦)) |
7 | opelvvg 5322 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 〈𝑥, 𝑦〉 ∈ (V × V)) | |
8 | df-br 4805 | . . . . . . . 8 ⊢ (𝑥(V × V)𝑦 ↔ 〈𝑥, 𝑦〉 ∈ (V × V)) | |
9 | 7, 8 | sylibr 224 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥(V × V)𝑦) |
10 | 9 | a1d 25 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ((𝐻‘𝑥)(V × V)(𝐻‘𝑦) → 𝑥(V × V)𝑦)) |
11 | 6, 10 | impbid2 216 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥(V × V)𝑦 ↔ (𝐻‘𝑥)(V × V)(𝐻‘𝑦))) |
12 | 11 | adantl 473 | . . . 4 ⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → (𝑥(V × V)𝑦 ↔ (𝐻‘𝑥)(V × V)(𝐻‘𝑦))) |
13 | 12 | ralrimivva 3109 | . . 3 ⊢ (𝐻:𝐴–1-1-onto→𝐵 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥(V × V)𝑦 ↔ (𝐻‘𝑥)(V × V)(𝐻‘𝑦))) |
14 | 13 | pm4.71i 667 | . 2 ⊢ (𝐻:𝐴–1-1-onto→𝐵 ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥(V × V)𝑦 ↔ (𝐻‘𝑥)(V × V)(𝐻‘𝑦)))) |
15 | df-isom 6058 | . 2 ⊢ (𝐻 Isom (V × V), (V × V)(𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥(V × V)𝑦 ↔ (𝐻‘𝑥)(V × V)(𝐻‘𝑦)))) | |
16 | 14, 15 | bitr4i 267 | 1 ⊢ (𝐻:𝐴–1-1-onto→𝐵 ↔ 𝐻 Isom (V × V), (V × V)(𝐴, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∈ wcel 2139 ∀wral 3050 Vcvv 3340 〈cop 4327 class class class wbr 4804 × cxp 5264 –1-1-onto→wf1o 6048 ‘cfv 6049 Isom wiso 6050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-xp 5272 df-iota 6012 df-fv 6057 df-isom 6058 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |