![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isof1o | Structured version Visualization version GIF version |
Description: An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.) |
Ref | Expression |
---|---|
isof1o | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-isom 5935 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
2 | 1 | simplbi 475 | 1 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wral 2941 class class class wbr 4685 –1-1-onto→wf1o 5925 ‘cfv 5926 Isom wiso 5927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-isom 5935 |
This theorem is referenced by: isores1 6624 isomin 6627 isoini 6628 isoini2 6629 isofrlem 6630 isoselem 6631 isofr 6632 isose 6633 isofr2 6634 isopolem 6635 isosolem 6637 weniso 6644 weisoeq 6645 weisoeq2 6646 wemoiso 7195 wemoiso2 7196 smoiso 7504 smoiso2 7511 supisolem 8420 supisoex 8421 supiso 8422 ordiso2 8461 ordtypelem10 8473 oiexg 8481 oien 8484 oismo 8486 cantnfle 8606 cantnflt2 8608 cantnfp1lem3 8615 cantnflem1b 8621 cantnflem1d 8623 cantnflem1 8624 cantnffval2 8630 cantnff1o 8631 wemapwe 8632 cnfcom3lem 8638 infxpenlem 8874 iunfictbso 8975 dfac12lem2 9004 cofsmo 9129 isf34lem3 9235 isf34lem5 9238 hsmexlem1 9286 fpwwe2lem6 9495 fpwwe2lem7 9496 fpwwe2lem9 9498 pwfseqlem5 9523 fz1isolem 13283 seqcoll 13286 seqcoll2 13287 isercolllem2 14440 isercoll 14442 summolem2a 14490 prodmolem2a 14708 gsumval3lem1 18352 gsumval3 18354 ordthmeolem 21652 dvne0f1 23820 dvcvx 23828 isoun 29607 erdsze2lem1 31311 fourierdlem20 40662 fourierdlem50 40691 fourierdlem51 40692 fourierdlem52 40693 fourierdlem63 40704 fourierdlem64 40705 fourierdlem65 40706 fourierdlem76 40717 fourierdlem102 40743 fourierdlem114 40755 |
Copyright terms: Public domain | W3C validator |